文章编号:1001-3555(2007)03-0193-07

高硅分子筛 ZSM-23 催化裂解 C4 烷烃制乙烯丙烯的研究

季 东¹, 汪 毅¹, 刘 涛¹, 苏 怡¹, 李 萍², 高雄厚¹ (1. 中国石油兰州化工研究中心, 甘肃 兰州 730060;

2. 兰州石化公司催化剂厂,甘肃兰州 730000)

摘 要:采用廉价的硅溶胶作为硅源,吡咯烷为模板剂,静态水热晶化法合成出不同硅铝比的 ZSM-23 分子筛.采用 XRD, SEM, 吡啶吸附红外光谱等技术, 对合成的 ZSM-23 分子筛的结构、形貌、表面酸性质进行了表征.并进行了所制样品对 C4 烷烃催化裂解制乙烯丙烯反应催化性能的研究.本文详细考察了硅铝比、反应温度、反应空速以及催化剂稳定性等各种因素对催化性能的影响.结果表明, ZSM-23 分子筛的乙烯丙烯收率达到 56.0%, 丁烷转化率达到 88.9%.

关键 词: ZSM-23; C4 烷烃; 催化裂解

中图分类号: 0643.32 文献标识码: A

随着世界范围内石油和天然气的增产,轻烃回 收技术的成熟和推广,以及我国石油天然气工业的 发展,碳四烃的来源越来越广,产量越来越大,对 其转化和综合利用的研究,也越来越深入^[1].碳四 烃是重要的石油化工原料,是单烯烃(正丁烯和异 丁烯)、二烯烃(丁二烯)、烷烃(正丁烷和异丁烷) 的总称.碳四烃主要来源于催化裂化(催化碳四烃) 和蒸汽裂解(乙烯裂解副产碳四烃),此外还有油田 气回收、乙烯齐聚、异丁烷和丙烯共氧化制环氧丙 烷等的副产物.

近年来,国外的研究者又研制出许多碳四烃利 用的新工艺,如丁烯齐聚/加氢间接烷基化工艺、 碳四烃与碳五烃裂解制烯烃工艺、乙烯与丁烯歧化 为丙烯工艺等,为碳四烃的高附加值利用开拓了新 途径^[2].

我国目前碳四烃的利用率还比较低,尤其是化 工利用尚处于起步阶段.随着我国炼油和乙烯工业 的不断发展,大量副产碳四烃的利用已成为亟待解 决的问题.2001年我国碳四馏分总产量已超过2 Mt/a,其中约1.13 Mt/a来自炼厂.随着我国炼油 和乙烯装置的扩能建设,碳四烃的产量也日益增 多.据文献[3]报道,到2015年我国原油加工能力 将达到380Mt/a,乙烯产能达14~15Mt/a,比1999 年分别增加100Mt/a和10Mt/a.随着我国乙烯生产 和原油加工能力的增加,乙烯厂和炼厂的副产碳四 及碳四以上富含烯烃的烃类的数量也将大量增加, 碳四烃的合理利用已是急需解决的问题^[4].同时, 碳四烷烃是一种不可忽视的低碳烷烃资源.油田 气、天然气及其催化裂化产物中含有大量的碳四烷 烃,它既是优质的燃料,又是制备一些化学品和聚 合物的重要原料.如果能将碳四烷烃转变为更有经 济价值的丙烯和乙烯等低碳烯烃,将大大缓解众多 工业过程对乙烯和丙烯等的需求.

碳四烷烃的转化反应大多数集中在异构化和氧 化、脱氢等方面,以丁烷为原料来开发丁烷催化裂 解制备低碳烯烃的工艺过程的研究却相对较少.正 丁烷催化裂解的反应经常被作为探针反应来研究烷 烃催化裂解的本质^[5~7],因为丁烷裂解的产物分布 简单,副产物少,能很好的反映出烷烃分子的裂解 途径.

丁烷催化裂解要生成更多的低碳烯烃,催化剂 必须满足下列要求:高的烯烃选择性;低的氢转移 活性;高的基质裂解活性;增加择形催化反应,使 中间产物有好的两次裂解能力;优良的热稳定性和 水热稳定性.目前各国的研究者的研究工作主要侧 重于采用分子筛作为催化 C4 烃裂解催化剂,如其 代表性的工艺有 Mobil 公司开发的烯烃相互转化工 艺(Mobil Olefin Interconversion,简称 MOI)、Lurgi 公司开发的 Propylur 工艺和 KBR 公司开发的 Superflex 工艺等^[8].

ZSM-23 分子筛是一种中孔、高硅分子筛,具有 MTT 结构的拓扑框架. ZSM-23 分子筛的骨架拓扑

收稿日期: 2006-05-24; 修回日期: 2006-07-11.

作者简介:季 东, 男, 生于 1977 年, 博士, 工程师. E-mail: jidonglz@ ahoo. com.

结构中同时包括五元环、六元环和十元环,但无类 似 MFI 结构分子筛的交叉孔道结构.其由十元环组 成的一维孔道为互不交联的平行孔道,其自由直径 为0.56×0.45 nm,与在催化反应中广泛使用的 ZSM-5 的0.56×0.54 nm 和0.55×0.53 nm 孔道相 比,ZSM-23 的孔道尺寸稍小,由于其独特的孔道结 构和较强的表面酸特性,在催化裂解碳四烷烃制乙 烯及丙烯的反应中表现出极佳的潜力^[9].

我们合成了具有不同硅铝比的 ZSM-23 分子筛, 并对其催化碳四烷烃裂解制乙烯及丙烯的性能进行 了评价,结果表明, ZSM-23 分子筛在催化碳四烷烃 裂解制乙烯及丙烯的反应中表现出极佳的潜力.

1 实验部分

1.1 试剂与仪器

硅溶胶(w(SiO₂) = 30%, d = 1.2 g/cm³, 乳白 色,工业级,青岛海洋化工厂);铝酸钠(w(Al₂O₃) =43%,上海东龙化工厂);氢氧化钠(w = 96%, 分析纯,江苏三木集团化工厂);吡咯烷(w = 99%, 分析纯,(Lancaster 进口分装,上海化学试剂公 司);氯化铵(w = 99.5%,分析纯,天津市化学试 剂一厂).实验所用原料 C4 采自兰州石化公司,其

按上述原料配比将铝酸钠溶于水中,然后加入 氢氧化钠,搅拌下再加入吡咯烷,最后将硅源加入 上述混合液中搅拌,然后将混合物转移到带有聚四 氟乙烯内衬的高压反应釜中,在176℃下晶化不少 于72 h. 晶化结束后,过滤,洗涤,在110℃下干 燥过夜,在空气气氛下在600℃的马弗炉中焙烧8 h. 产物用 NH₄Cl 溶液于85℃交换四次,最后在 600℃下焙烧4 h,即得 HZSM-23 分子筛. 所有制 备得到的产物在0.2MPa 压力下压片,过筛得到粒 径为0.4~0.8 mm 的成品催化剂.

1.3 催化性能评价

催化剂活性评价在自制的小型固定床反应器中进行.反应器为内径 7 mm,长 600 mm 的石英管.

组成为 54.5% 正丁烯, 44.7% 异丁烯, 其它烃 0.8%.

分子筛催化剂的结构表征采用 XRD 谱, 在 D/ Max-2400 Rigaku 衍射仪上测定, Cu 靶, Kα 辐射, 管电压 40 kV, 管电流 60 mA, 步进扫描, 扫描范 围: 5°~50°, 扫描速度 4°/min, 步长 0.02°. N,吸 附/脱附是在 Micromeritics ASAP 2010 快速表面/孔 结构分析仪上进行,样品在 323 K 及 1.66 × 10⁻⁴ Pa 下预脱附 12 h. 金属元素的含量测定在等离子体原 子发射光谱(ICP-AES)(美国 ARL3520 光度计)上 进行.由JSM-5600LV型低真空扫描电子显微镜摄 取分子筛样品的晶体形貌照片,观察其形貌,并由 电镜照片估算其粒径. 分子筛的表面酸性由吡啶吸 附红外光谱法测定,所用仪器为美国 Nicolet 公司 的 FT-510T 型傅里叶红外光谱仪. 气体产物采用气 相色谱(Varian 3700 gas chromatography, 50m×0.32 mmAl₂O₃毛细管柱, FID)分析, 对数据进行面积归 一法处理. 液体产物采用气相色谱(毛细管柱 SE-54, FID)分析.

1.2 催化剂的制备

采用水热合成方法,典型的晶化混合液组成为:

120 $\text{SiO}_2 \cdot \text{Al}_2\text{O}_3 \cdot 18.2$ Pyrrolidine $\cdot 1.8$ NaOH $\cdot 500$ H₂O

将称量的催化剂颗粒装在反应器的恒温区,两头装填石英棉. C4 原料经气化装置进入反应器,反应产物经气液分离器分为气、液两相,气相产物经六通阀取样后进入气相色谱分析系统,液相产物定时收集、称重,用以计算反应转化率,六通阀及相关管线由加热带保温,以免产物中高碳烃在管线内积存.

2 结果与讨论

2.1 ZSM-23 分子筛表征结果与讨论

所合成的 HZSM-23 分子筛催化剂的物化性质 见表1. 从表1 中的数据可以发现,样品的比表面 积随着 Si/Al的减小有所增加,而平均孔径没有

表1不同 Si/Al 比的 HZSM-23 样品物化性质							
Table 1 Chemical	compositions and pl	vsical properties	of the	samples of	as-synthesized	HZSM-23	

S] .	Si/A	Si/Al ratio		DET $(-2, -1)$	
Sample	In gel	In product	rore size (A)	DEI area (mg)	
HZSM-23-100	100	105	5.7	296	
HZSM-23-60	60	68	5.7	330	
HZSM-23-30	30	44	5.7	337	

变化.

图 1 为静态水热法合成的 ZSM-23 的 XRD 谱

图 1 不同 Si/Al 比的 HZSM-23 样品的 XRD 谱图 Fig. 1 X-ray powder diffraction patterns of as-synthesized ZSM-23 (a) HZSM-23-100; (b) HZSM-23-60; (c) HZSM-23-30 图. 与文献[9~11]的 XRD 谱图完全吻合.

图 2 为所合成的 ZSM-23 分子筛的 SEM 照片. 从图中可以看出,所合成的 ZSM-23 分子筛为枣核 型晶体,其晶粒尺寸随分子筛硅铝比的增加而增 大.所合成的分子筛样品晶体分布均匀,无其它杂 晶,为结晶度良好的 ZSM-23 分子筛.

吡啶吸附红外光谱常被应用于分析固体催化剂 表面的 B 酸和 L 酸性^[12~17].当吡啶和 B 酸结合时 形成吡啶基离子,在红外光谱图中~1 550 cm⁻¹处 有一特征峰,而吡啶和 L 酸结合时得到一种配合 物,在红外光谱~1 450 cm⁻¹处有一特征峰.根据 吸收峰的面积定量判断催化剂表面 B 酸和 L 酸含 量的变化^[18~20].为了考察 ZSM-23 分子筛的表面 酸性质,由吡啶吸附红外光谱法测定了催化剂的表 面酸性和酸量.结果如图 3 所示,对于 HZSM-23 沸 石分子筛,在表征约1 540 cm⁻¹和 1 450 cm⁻¹处均 出现较强吸收峰^[21],表明HZSM-23沸石分子筛具

图 2 不同 Si/Al 比的 HZSM-23 样品的 SEM 谱图 Fig. 2 SEM images of as-synthesised ZSM-23

(a) ZSM-23-30; (b) ZSM-23-60; (c) ZSM-23-100

有较多的 B 酸和 L 酸中心, 而且 B 酸吸收峰强度要 大于 L 酸的吸收峰强度, 说明 HZSM-23 沸石分子 筛各个样品的 B 酸含量均比 L 酸的含量多. 而 B 酸 和 L 酸的吸收峰强度均随配料硅铝比的增大而降 低, 这主要是由于随着进入分子筛骨架中 Al³⁺含量 的增加, 分子筛表面与骨架中 Al³⁺结合的 H⁺也相 应增多,从而增加了分子筛的 B 酸含量和 L 酸含量.

2.2 硅铝比对分子筛催化性能的影响

催化裂解所用催化剂主要是各种固体酸,而其 催化性能与所使用的分子筛催化剂的表面酸性密切 相关.由于沸石分子筛的酸性质是由骨架铝引起

的,因此分子筛的酸性质与其硅铝比密切相关.在 我们的实验中,对不同硅铝比的 HZSM-23 分子筛 在催化 C4 烷烃裂解制乙烯丙烯反应中的催化性能 进行了考察评价,反应条件为:反应温度为600 ℃, 进料空速 3 000 mL/h/g.实验结果如图 4 和图 5 所 示.可以看出,丁烷转化率和乙烯、丙烯收率均

Fig. 4 The butane conversion as a function of time on stream at 873K with 3 000mL/h/g over HZSM-23-100,

HZSM-23-60 and HZSM-23-30 catalysts

随 ZSM-23 分子筛配料硅铝比的降低而增大,配料 胶体中硅铝比为 30 的 HZSM-23-30 分子筛催化剂 的催化性能最好,其丁烷转化率和乙烯、丙烯收率 最高.这说明 ZSM-23 分子筛的硅铝比对 C4 烷烃裂 解反应有着很大影响. 烃类在酸性分子筛上的催化 裂解反应通常被认为遵从正碳离子反应机理^[22-25]. 而正碳离子的产生依赖于分子筛催化剂的表面酸 性. 由于沸石分子筛的酸性质是由骨架铝引起的,

Fig. 5 Yields of ethylene and propylene as a function of time on stream

at 873 K with 3 000mL/h/g over HZSM-23-100,

HZSM-23-60 and HZSM-23-30 catalysts 因此研究酸性质与硅铝比的关系,更能了解分子筛 的酸性本质.这应与 HZSM-23-30 的表面具有较多 的 B-酸有关.通过以上 FT-IR 吡啶吸附测定其酸性 表征结果也证实了这一结论.同时,根据本研究小 组研究发现^[26],HZSM-23 分子筛的催化性能与 ZSM-5 分子筛相比,有着更大的优势.因此,后续 的实验研究主要将围绕 HZSM-23-30 分子筛催化剂 进行.

2.3 反应温度对催化性能的影响

由表2实验结果可以看出,随着反应温度的升高,乙烯的产率不断增加,丙烯、丁烯和总烯烃产 率均有一最高值.这是因为催化裂解过程实际上是 催化裂化反应和热裂解反应共存的过程,热裂解反 应按自由基反应机理进行,反应生成较多的乙烯, 催化裂化反应按正碳离子反应机理进行^[27],生成 较多丙烯和丁烯.两种反应的反应速率均随反应温 度升高而增加,总的裂解程度随之增加,乙烯和丙 烯产率均随之增加.

我们在 525~650 ℃范围内考察了反应温度对 HZSM-23-30 反应性能的影响,结果如图 6 所示.适 当提高反应温度可以增加裂解深度,提高低碳烯烃 的收率.反应温度升高都在不同程度上提高了丙 烯、乙烯收率,同时甲烷比例上升(见表 2).

2.4 空速对催化性能的影响

在一定条件下,适当增加空速可以提高单位时 间内产品的产量,提高催化剂的利用率;但空速过 大,反应物在反应器内的停留时间过短,转化率较

		-		-			
Reaction temperature ($\ ^{\circ}\!\!\!C$)	525	550	575	600	625	650	
Methane	2.6	4.2	5.5	6.2	7.1	8.7	
Ethylane	4.8	3.2	2.4	2.3	2.8	3.9	
Ethylene	34.7	37.7	39.3	41.9	43.1	43.8	
Propylane	9.1	6.6	7.8	8.9	6.4	7.0	
Propylene	12.0	13.6	14.4	14.1	13.8	12.1	
<i>n</i> -Butane	14.5	8.2	6.3	5.0	4.3	4.1	
iso-Butene	13.5	11.5	9.0	7.6	8.0	6.3	
Trans-butene	0.8	1.3	1.7	1.6	2.0	1.3	
<i>n</i> -butene	1.5	2.5	2.4	2.9	3.0	2.1	
iso-Butene	0.6	1.9	1.8	1.9	1.3	1.5	
cis-Butene	1.5	2.4	2.4	2.3	2.2	1.9	
C5 ⁺	4.2	6.8	7.0	6.2	5.8	6.9	
X ($\%$) $^{\mathrm{a}}$	74.0	80.3	84.7	87.4	87.7	89.6	

表 2 不同反应温度的产物分布

Table 2 Distribution of product at different reaction temperature

^aConversion of butane; Reaction condition: catalyst: 0.3 g, butane: 2 mL,

GHSV: 3 000 mL/h/g, balance nitrogen, time on stream: 2 h

Fig. 6 Yield of ethylene and propylene at different reaction temperature

低,使原料的利用率下降. 在反应温度为600 ℃时, 考察了进料空速的变化对 HZSM-23 分子筛催化性 能的影响,结果如表 3 和图 7 所示. 在我们考察的 条件下,进料空速的变化对丙烯的收率的影响比较 小,在空速从 2 000 mL/h/g 增加到 5 000 mL/h/g 时,丙烯收率变化不到 1%,而乙烯收率下降了 8.1%.可能的原因是原料裂解的深度随空速的增 加而降低,因此乙烯的比例下降.

2.5 催化剂稳定性实验

催化剂的稳定性能实验条件为:床层温度 600 ℃,C4 进料空速 3 000 mL/h/g,连续反应了 70 h,结果如图 8 所示,乙烯、丙烯总收率由 56.0% 下降到22.2%.然而,反应在40 h内 C4烷烃的转化率

表 3 不同反应空速的产物分布

Table 3 Distribution of product at different GHSV

GHSV(mL/h/g)	2 000	3 000	4 000	5 000
Methane	8.2	6.2	4.6	2.8
Ethylane	4.4	2.3	3.8	3.8
Ethylene	42.8	41.9	38.7	34.7
Propylane	6.5	8.9	6.0	7.8
Propylene	13.1	14.1	14.4	13.9
<i>n</i> -Butane	4.7	5.0	9.8	12.1
iso-Butene	6.1	7.6	13.3	14.4
Trans-Butene	1.4	1.6	1.1	0.8
<i>n</i> -Butene	2.2	2.9	1.6	1.6
iso-Butene	1.3	1.9	0.6	0.9
cis-2-Butene	1.9	2.3	1.5	1.7
C4 *	7.4	6.2	4.1	5.2
X(%) ^a	89.2	87.4	76.9	73.5

^aConversion of butane; Reaction condition: catalyst: 0.3 g, butane: 2 mL, balance nitrogen, 873 K, time on stream: 2 h 从 86.3% 下降到 78.9%; 乙烯和丙烯总收率只下 降到 43.2%.造成 C4 烷烃的转化率和乙烯和丙烯 总收率下降的一个主要原因是由于催化剂表面积 炭.从积炭量分析(表 4)可以看出,随着反应的不 断进行,积炭量也在逐渐增加,使积炭沉积于催化 剂表面上,从而覆盖了催化活性中心,影响产物的

生成. 然而, 当把催化剂在氧气氛中, 600 ℃焙烧2

Fig. 7 Yield of ethylene and propylene at different GHSV

Reaction	Coke content (%)		The molar	
time (h)	Carbon	Hydrogen	ratio of C/H	
2	0.87	0.06	1.20	
10	1.08	0.12	0.75	
30	1.92	0.24	0.67	
70	2.09	0.22	0.79	

h 后反应,催化剂催化性能完全恢复.

3 结 论

采用水热合成法,以硅溶胶为硅源、吡咯烷为 模板剂合成了不同 Si/Al 比的 ZSM-23 分子筛.从 XRD、SEM、吡啶吸附红外光谱等测得 ZSM-23 分子 筛结果可以看出,所合成的 ZSM-23 分子筛具有典 型的 MTT 结构,具有较多的 B 酸和 L 酸中心,其 B 酸和 L 酸中心数目随配料硅铝比的增大而减少.通 过对不同硅铝比 HZSM-23 分子筛的催化 C4 烷烃裂 解和性能的考察,发现配料硅铝比为 30 的 ZSM-23 分子筛的催化性能最佳. 在反应温度为 600 ℃, GHSV:3 000 mL/h/g 的条件下,其乙烯和丙烯的 收率达到 56.0%,丁烷转化率达到 88.9%.稳定性 实验结果表明,ZSM-23 分子筛可以较长时间维持 高的乙烯和丙烯收率,如开发配套工艺,降低催化 剂使用成本则有一定的应用前景.

参考文献:

- [1] Xie Chao-Gang (谢朝钢), et al. Petrochem. Tech. (China)(石油化工)[J], 1997, 26(12): 825~829
- [2] Hong Zhong-Ling (洪仲苓), et al. (化工有机原料深加工)[M], 化学工业出版社, 1997
- [3] Wei Wen-De (魏文德), et al. (有机化工原料大全)
 [M],第二版,化学工业出版社,1999
- [4] Cao Xiang-Hong (曹湘洪), et al. Chin. Petrochem. (China) (中国石油石化) [J], 2001, 9(1): 7~12
- [5] Krannila H, Hagg W O, Gates B C. J. Catal. [J], 1992, 135: 115 ~ 124
- [6] Rastelli H, Lok B M, Duisman J A, et al. Can. J.
 Chem. Eng. [J], 1982, 60: 44
- [7] Lombardo E A, Hall W K. J. Catal. [J], 1992, 112: 565
- [8] BASF. CN[P], 1218787A, 1999
- [9] Paul M, Vu A T, Le N H, et al. J. Chem. Soc., Faraday trans. [J], 1998, 94(3): 467 ~ 471
- [10] Moini, Ahmad, Schmitt, D. Kirk, Us patent [P] 5405596. 1995
- [11] Ernst S, Kumar R, Weitkamp J. Catal. Today [J], 1988, 3: 1~10
- [12] Kumar R, Ratnasamy P. J. Catal. [J], 1990, 121: 89 ~98
- [13] Selli E, Forni L. Micro. and Meso. Mater. [J] 1999, 31: 129 ~ 140
- [14] Emeis C A. J. Catal. [J], 1993, 141: 347 ~ 354
- [15] Busca G. Catal. Today[J], 1998, 41: 191 ~ 206
- [16] Topsøe N Y, Pdersen K, Derouane E. J. Catal. [J], 1981, 70: 41~52
- [17] Pieterse J A Z, Reyes S V, Seshan K, et al. J. Catal.
 [J], 1999, 187
- [18] Wu En-yuan (吴恩源), Li Quan-zhi (李全芝). Chem.
 J. Chin. Univer. (China)(高等学校化学学报)[J],
 1991, 12: 436~440
- [19] Wang Zong-ming (王宗明), He Xin-xiang (何欣翔), Sun Dian-qing (孙殿卿). 实用红外光谱学 [M], 第 二版, 石油工业出版社, 1990, 406~471

- [20] Yu Li-qin (余励勤), Li Xuan-wen (李宣文). Petrochem. Technol. (China)(石油化工) [J], 2000, 29: 621~635
- [21] Ernst W, Valyocsik, Yardley. Us patent [P], 4490342. 1984
- [22] Gonzalez M R, Kobe J F, Fogash K B, et al. J. Catal.
 [J], 1996, 160: 290
- [23] Kumar N, Vainio M, Nieminien V, et al. Stud. Surf. Catal. [J], 2001, 135: 3 930

- [24] krannila H, Haag W O, Gates B C. J. Catal. [J], 1992, 135: 115
- [25] Corma A, Wojciechowsk B W. Catal. Rev. Sci. [J], 1985, 27(1): 33
- [26] Ji D, Wang B, Qian G, et al. Catal. Comm. [J], 2005, 6: 297 ~ 300
- [27] Wang B, Gao Q, Gao J, et al. Appl. Catal. A: Gen.
 [J], 2004, 274: 167 ~ 172

Direct Synthesis, Characterization and Catalytic C4 Alkane Cracking Properties of Zeolite ZSM-23

JI Dong^{1*}, WANG Yi¹, LIU Tao¹, SU Yi¹, LI Ping², GAO Xiong-hou¹

(1. Lanzhou Petrochemical Company Research Institute, PetroChina, Lanzhou 730060, China;

2. The Catalyst Plant of PetroChina Lanzhou Petrochemical Company, Lanzhou 730060, China)

Abstract: Pure and well crystallized zeolite ZSM-23 zeolite with different Si/Al ratio were prepared under static hydrothermal conditions using pyrrolidine as template, colloidal silica as source of silica. The samples obtained were characterized by powder X-ray diffraction (XRD), N_2 adsorption/desorption, scanning electron microscopy (SEM), and FTIR of adsorbed pyridine, and was very efficient and stable catalysts for the catalytic cracking of C4 alkane. The highest C4 alkane conversion of 88.9% and the total yields of ethylene and propylene of 56.0% were obteined.

Key words: ZSM-23; C4 alkane; Catalytic cracking