Vol. 23, No. 4 Aug. 2009

文章编号:1001-3555(2009)04-0329-05

Co-Cu/SiO2 催化剂的表征

刘炳华^{1.2},上官荣昌¹,沈俭一²*

(1. 淮阴师范学院 化学系 江苏省低维材料化学重点建设实验室,江苏 淮安 223300;
2. 南京大学 化学系 介观化学教育部重点实验室,江苏 南京 210093)

摘 要:用溶胶-凝胶法制备了 Co-Cu/SiO₂系列的担载型催化剂,采用 S_{BET}、TPR、XRD、O₂滴定等技术对该催化 剂进行了研究,并考察了催化剂在 F-T 合成反应中的催化性能.结果表明,样品的 S_{BET}较大, Co 和 Cu 组分均很好 分散; Cu²⁺的加入使得 Co 更易于被氢气还原, Co 是经由 Co³⁺→Co²⁺→Co⁰的还原过程, Cu 的还原为 Cu²⁺→Cu⁰; Cu²⁺的引入使得样品中钴的还原度增大,对 F-T 合成的催化性能有了一定的改善.

关 键 词: Co-Cu/SiO₂ 催化剂; TPR; XRD; O₂ 滴定; F-T 合成
 中图分类号 0643.3
 文献标识码 A

近年来,对Fischer-Tropsch 合成(简称F-T 合成)最具有发展前途的含Co催化剂^[1],成为人们研究的热点^[2~8].有关钴或铜的催化剂方面的研究和应用也屡有报道^[9~11],铜可以作为F-T 合成Fe 催化剂的助剂^[12].我们^[13]曾探讨过由溶胶-凝胶法制得的担载型Co/SiO₂系列催化剂.为了能进一步了解铜的添加对以SiO₂为载体担载钴催化剂的物理化学性质的影响,本文以溶胶-凝胶法制备了担载型的Co-Cu/SiO₂系列催化剂,采用TPR、BET、XRD以及O₂化学吸附测定(O₂滴定)等表征方法进行了研究,并考察了F-T 合成反应中的催化性能.

1 实验部分

1.1 催化剂制备

药品: $Co(NO_3)_2 \cdot 6H_2O(A. R.)$,上海恒信化 学试剂有限公司; $Cu(NO_3)_2 \cdot 6H_2O(A. R.)$ 中国 医药(集团)上海化学试剂公司; 柠檬酸(A. R.), 南京化学试剂一厂; Si(OC_2H_5)₄(A. R.),上海化 学试剂采购供应五联化工厂; PEG - 400(C. P.), 上海浦东高南化工厂; 无水乙醇(A. R.),南京化 学试剂有限公司.

采用 Sol-Gel 法^[13~15]并按物质的量的比,制备 了 Co-Cu/SiO₂系列样品,每份制备 2 g 左右,具体 方法如下. 将计量的 Co(NO₃)₂ · 6H₂O、Cu(NO₃)₂ · 6H₂O和柠檬酸分别溶解于 25 mL 水中,将柠檬酸 滴加到硝酸钴和硝酸铜的混合水溶液中,加入 PEG-400 0.5 mL,超声震荡条件下将计量的 Si (OC₂H₅)₄滴加到上述溶液中,再加入 35 mL 无水 乙醇,保鲜薄膜封口,震荡均匀后置于 60 ℃水浴 中使之成胶.形成凝胶后去掉封口,继续在 60 ℃水 浴中蒸干.将样品取出,置于 100 ℃烘箱中过夜,研 细后置马弗炉中在 400 ℃下焙烧 3 h.取出,置干燥 器中恒重,计算得实际的 Co 担载量.将样品压片、 粉碎、过筛,制成粒径 0.900~0.450 mm 颗粒.所 制成的样品,均用下式表示: xCo-yCu/zSiO₂, x、y、 z 分别代表 Co、Cu 和 SiO₂的物质的量的百分数.

1.2 催化剂表征

BET 比表面积(S_{BET})测定:在自建吸附装置^[17] 上进行.样品(约0.1 g)经400 ℃下抽空1h后在液 氮温度下氮气吸附后,根据BET 公式计算出比表面 积. TPR 测定:自组装仪器,使用气相色谱仪热导 检测,样品约为50 mg,室温下用5.15%的H₂、N₂ 纯度为99.995%的H₂/N₂(V)混合气(40 mL/min) 吹扫1h后,进行程序升温还原,升温速率为10 ℃/min下测定 TPR 谱图. XRD 测试:日本理学 Rigaku D/Max-RA 型, Cu 靶, Kα 射线,波长 0.15418 nm,管压40 kV,管流50 mA,接受狭缝宽

收稿日期: 2008-10-20;修回日期: 2009-02-11.

基金项目:国家自然科学基金(No. 20373023)和科技部国际合作基金(No. 2004DFB02900)资助项目.

作者简介:刘炳华,男,1964年出生,副教授,理学博士.

¹⁾ 通讯联系人, Tel: 025-83594305; E-mail: jyshen@nju.edu.cn..

0.3 mm, 扫描速率10°/min. O_2 滴定: 在自建吸附装置上进行测试, 称取 0.2 g 左右的样品装入流动样品池, 连接于吸附装置, 经抽空后, 室温下充入高纯氢(99.999%)至0.1 MPa 后以 30 mL/min 吹扫30 min, 继续吹扫氢气并以 10 ℃/min 的升温速度从室温升到 425 ℃并恒温 3 h、再抽空 1 h 后, 在400 ℃下进行 O_2 滴定至平衡压力为 50 ~ 60 kPa.

1.3 催化剂活性评价

催化剂性能评价在加压微型固定床反应装置上进行.催化剂装填量为0.2g,反应前的还原条件与 O₂滴定相同,还原后降至423K以下,切换原料合成气,升至反应所需的压力,再缓慢升温至反应温度,达到稳态后开始取样分析.原料合成气是通过 CH₄-Air-CO₂-H₂O反应在加压条件下制备的,其组 成为: n(H₂): n(CO): n(N₂): n(CH₄): n (CO₂) = 2.08: 1.00: 2.06: 0.03: 0.47, 其中 N₂ 同时作为内标气体.反应产物采用 GC-8A 型气相色 谱仪进行分析, N₂, CO, CO₂和 CH₄用 TDX-01 填充 柱和 TCD 检测器进行检测, 气态烃用 Porapak-Q 柱 和 FID 检测器检测, 用 N-2000 色谱工作站进行数 据采集和处理.

2 结果与讨论

2. 1 S_{BET}

表1给出了 Co-Cu/SiO₂系列催化剂的 S_{BET}.由表1可以看出,各样品的 S_{BET}都较大;与 25Co/75SiO₂样品比较,加入 Cu 后各样品的 S_{BET}皆有所降

表1 样	品的 O	,滴定、	XRD	和	SPET	结果
------	------	------	-----	---	------	----

Table 1	Results of S _{BET}	, XRD Ana	lyses and O ₂	titration	of different	catalyst	samples
---------	-----------------------------	-----------	--------------------------	-----------	--------------	----------	---------

Sample	$S_{BET}(m^2/g)$	O_2 Uptake(µmol/g)	Reduction (%)	XRD analysis
25Co/75SiO ₂	277	684	24.5	$Co_3O_4(less)$
17Co-8Cu/75SiO ₂	211	2 174	85.3	Co_3O_4 , CuO
12.5Co-12.5Cu/75SiO ₂	236	1 852	76.7	Co_3O_4 , CuO
8Co-17Cu/75SiO ₂	267	2 158	94.5	Co_3O_4 , CuO
25Cu/75SiO ₂	308	2 050	99.9	CuO

低, $17Co-8Cu/75SiO_2$ 样品的 S_{BET} 最低, 随后再随Cu 含量的增多 S_{BET} 又有所变大; 而不含钴仅含铜的 $25Cu/75SiO_2$ 样品, XRD 谱线的毛刺十分显著, 其 S_{BET} 为 308 m²/g、最大. 表明 Co 和 Cu 组分在 SiO₂ 担体上均很好分散.

2. 2 XRD

图1是混合氧化物样品的 XRD 谱图,物相分 析结果见表1.从图中可以看到,25Co/75SiO₂样品 应可能是因为硅、钴间的相互作用生成无定形或微 晶 CoSiO₃(或 Co₂SiO₄))以及较高含量的无定形 SiO₂(或其微晶),谱线中的毛刺极为显著,而 Co₃O₄(JCPDS-78-1970)的衍射峰强度却十分微弱, 表明 Co 的分散度好.这与表1中的 S_{BET}结果是吻合 的.在既含有铜又含有钴的3个样品中均出现了 Co₃O₄和 CuO(JCPDS-80-1917)晶相,且随着铜含量 的增大 CuO 晶相的特征衍射峰的强度增强、峰形也 更为明锐.对于样品 25Cu/75SiO₂,其谱图只有极显 著 CuO 相衍射峰.随着样品中铜的加入和含量的增 多毛刺也更加显著,这表明应有更多的无定形 Cu-SiO₃或微晶生成的缘故,S_{BET}也应更大,这与表1中 S_{BET}的结果是相对应的.

331

化,图2给出了17Co/8Cu/75SiO2样品经不同条

○: Co; □: Cu

件 TPR 后的 XRD 谱图. 由图 2 可以看出, 经 TPR30 ~400 ℃还原后只呈现出 Cu (JCPDS-04-0836)的特 征衍射峰, 未见 Co(JCPDS-15-0806)、CoO (JCPDS-78-0431)和 Co₃O₄等物相的特征衍射峰, 谱线中存 在的明显毛刺应说明 Co₃O₄被还原为低价态的 CoO 是以微晶或非晶相存在; 经 TPR30~950 ℃还原后, 呈现出明显的 Co 相和 Cu 相的特征衍射峰, 表明样 品中的 Co³⁺、Co²⁺和 Cu²⁺均已被 H₂还原为 Co 和 Cu.

2.3 TPR

从图 3 可以看出,对于不含 Cu 的 25Co/75SiO₂ 样品中氧化物的还原,出现了两个峰高都较低矮的 耗氢还原峰:一个峰温(T_M)较高(804 ℃),另一个 T_M较低(408 ℃),这是样品中担载在 SiO₂上的 Co₃O₄经由 Co³⁺→Co²⁺→Co⁰还原过程^[13].从图中 还可以看出,没有加 Co 仅含 Cu 的 25Cu/75SiO₂样 品只有一个 T_M = 262 ℃的还原峰,这显然是 Cu²⁺ →Cu⁰的还原^[18].随着 Co-Cu/SiO₂样品中 Cu 含量的 增大,Co 含量的降低,T_M由原有的高于 800 ℃而下 降为低于 750 ℃,这一高 T_M所标志的还原过程,应 是样品中 Co²⁺→Co⁰的还原.而对于 Co³⁺→Co²⁺的 还原:样品 17Co-8Cu/75SiO₂,其还原峰是作为一 肩峰而出现在 T_M = 315 ℃处;对样品 12.5Co-12.5 Cu/75SiO₂,其还原峰的 T_M = 265 ℃;而对 Cu 含量

更高的样品8Co-17Cu/75SiO₂,其还原峰的 T_{M} =

图 3 系列样品的 TPR 图

Fig. 3 TPR profiles of the the group catalysis samples 262 ℃. 三个样品的 T_M的依次降低, 应当与样品中 Cu加入量的增大, Co含量的降低, 所引起的样品 中的 Co、Cu 和 SiO, 三者间相互作用的强度变化有 关,也表明 Cu 的加入及其含量的增加使 Co 的 T_{M} 降低而易于还原. 对于 $Cu^{2+} \rightarrow Cu^{0}$ 的还原: 17Co-8Cu/75SiO₂样品的 T_M = 271 ℃; 对于 12.5Co-12. 5Cu/75SiO₂样品,是T_M=216 ℃处的肩峰;而对于 Cu 含量为 17% 的 8Co-17Cu/75SiO,样品, 是一个峰 形很不对称有明显峰形叠加的宽峰,其T_M=228 ℃. 四个样品的 $Cu^{2+} \rightarrow Cu^{0}$ 的还原峰的 T_M的不同, 也明显是由于样品中的组份含量的不同所导致的组 份间的相互作用的不同和变化所致. 可见, Cu²⁺的 还原也由于 Co 的存在而变化. 结合 XRD 的物相结 果,应表明:该系列样品的 TPR 中, Co 是经由 $Co^{3+} \rightarrow Co^{2+} \rightarrow Co^{0}$ 的还原过程; 而 Cu 的还原则是 $Cu^{2+} \rightarrow Cu^{0}$.

2.4 O₂滴定

催化剂还原后,400 ℃下 O_2 吸附的等温线如图 4 所示.测得的 O_2 饱和覆盖度是由吸附等温线的直 线部分反向延长至零压后得到.根据 $Co/O_2 = 1.5$, $Cu/O_2 = 2^{[16]}$,以及 400 ℃下 O_2 吸附的饱和覆盖度, 可以按公式(还原度 = O_2 Uptake (µmol/g) ÷ [100 000 × Co% ÷ (58.93 × 1.5) + 100 000 × Cu%÷ (63.55 × 2)] × 100%)计算出此还原条件下各个 样品的还原度,结果列于表 1.可以看出: 25Co/

75SiO₂的还原度仅有24.5%,最难还原;当含Co

样品中的部分 Co 被 Cu 置换后得到的不同含量的 Co-Cu 样品的还原度都明显变大. 例如: 8Co-17Cu/ 75SiO₂的还原度达到 94.5%,说明铜引入后,不仅 其本身会被还原也使得钴变得易于还原,这与 TPR 中 T_M降低的结果是吻合的. 表 1 中 25Cu/75SiO₂样 品的还原度最大为 99.9%,表明样品中的 Cu²⁺已 被完全还原为 Cu;其余样品的还原度均低于 100%,应表明这些样品中含有的 Co 仍有部分是以 +2,+3 价形式存在,而没有被全部还原为 Co⁰.

2.5 催化剂的催化性能

表2中给出了催化剂在F-T合成反应中的催化 性能.从表2可以看出,未添加Cu的25Co/75SiO₂ 催化剂的活性很低,在反应温度为503K时,CO的 转化率只有4.1%;而添加Cu以后,催化剂的CO 转化率就有一定的提高,达到5.3%以上,说明在 催化剂催化剂中添加一定量的Cu可提高催化剂的 催化活性.从烃产物的选择性来看,Co-Cu催化剂 的甲烷选择性有所降低,C₅₊烃选择性改变不明显,

表 2 Co-Cu/SiO₂系列催化剂在 F-T 合成反应中的催化性能

Table 2	Catalytic	performance	of	Co-Cu/	SiO_2	catalysts	for	F-T	synthesis
---------	-----------	-------------	----	--------	---------	-----------	-----	-----	-----------

	X(CO)	$S(CO_2)$	Hydrocarbon product selectivity (%)					
Catalyst	(%)	(%)	C ₁	C_2	C ₃	C_4	C _{5 +}	
25Co/75SiO ₂	4.1	0.3	29.2	3.3	4.1	3.8	59.3	
17Co-8Cu/75SiO ₂	5.3	8.1	21.5	2.2	3.2	3.3	61.7	
12.5Co-12.5Cu/75SiO ₂	9.5	19.3	19.2	2.5	2.5	2.1	54.2	
8Co-17Cu/75SiO ₂	16.2	26.9	16.7	1.3	1.1	1.9	52.1	

Reaction conditions: $n(H_2)$: n(CO): $n(N_2)$: $n(CH_4)$: $n(CO_2) = 2.08$: 1.00: 2.06: 0.03: 0.47;

GHSV = 500 h $^{-1}$; T = 503 K; p = 0.2 MPa

但 CO₂的选择性随催化剂中添加 Cu 的增加而显著 增大.因此,综合 CO 转化率以及 C₅₊ 烃和 CO₂的选 择性来考虑,17Co-8Cu/75SiO₂助剂催化性能较好. 可见,Cu 可以作为在 F-T 合成反应的 Co 催化剂的 助剂.

3 结 论

对 Sol-Gel 法制备的 Co-Cu/SiO₂系列担载型催 化剂的 XRD, TPR, S_{BET}, O₂滴定等表征后表明, Sol-Gel 法制备的样品的 S_{BET}都较大,在 SiO₂担体 上, Co 和 Cu 均很好的分散;含钴的样品中都有 Co₃O₄晶相;样品中出现明显的 Co₃O₄和 CuO 晶相, 铜含量增大时 CuO 晶相的特征衍射峰更为明显;铜 含量越大的样品其毛刺也越明显,应为生成的无定 形 CuSiO₃或其微晶更多所致; 25Co/75SiO₂的还原 度仅有 24.5%、很难被氢气还原,加入铜以后, 8Co-17Cu/75SiO₂的还原度达到 94.5%,说明 Cu²⁺ 的引入使得钴氧化物变得更易于还原; 25Cu/ 75SiO₂样品的还原度为 99.9%,Cu²⁺已完全还原; 而对于还原度都低于该数值的含 Co 样品,应仍有 部分钴是以 +2、+3 价形式存在而没有被还原为 Co⁰; Co-Cu/SiO₂系列样品的 TPR,除有 Co³⁺→ Co²⁺→Co⁰还原外,还有 Cu²⁺→Cu⁰的还原,Co³⁺→ Co²⁺ 过程的 T_M由 800 ℃左右降到 280 ℃左右,而 Co²⁺→Co⁰的过程的 T_M则由 800 ℃左右降到了 750 ℃左右,表明 Cu 的加入促进了 Co 的还原.加入 Cu 可以使 25Co/75SiO₂对 F-T 合成的催化性能有一定 的改善.

参考文献:

[1] Dry M E. Catal. Today [J], 1990, 6: 183 ~ 206

- [2] Oukaci R, Singleton A H, Goodwin J G. Jr. Appl.
 Catal. A: General [J], 1999, 186: 129 ~ 144
- [3] Reuel R C, Bartholomew C H. J. Catal. [J], 1984,
 85: 78~88
- [4] Iglesia E, Soled S L, Fiato R A. J. Catal. [J], 1992, 137: 212 ~ 224
- [5] Geerlings J J C, Zonnevylle M C, De Groot C P M. Surf. Sci. [J], 1991, 241: 302 ~ 314
- [6] Kraum M, Baerns M. Appl. Catal. A: General [J], 1999, 186: 189 ~ 200
- [7] Vanhove D, Zhuyong Z, Makambo L, et al. Appl.
 Catal. [J], 1984, 9: 327 ~ 342
- [8] Lapidus A, Krylova A, Rathousky J, et al. Appl. Catal. A: General[J], 1992, 80: 1~11
- [9] Rathousky J, Zukal A, Lapidus A, et al. Appl. Catal.
 A: General[J], 1991, 79: 167 ~ 180

- [10] Bessell S. Appl. Catal. A: General [J], 1993, 96: 253 ~ 268
- [11] Jong S J, Cheng S. Appl. Catal. A: General [J], 1995, 126: 51~66
- [12] Wang Hong(王 洪), Yang Yong(扬 勇), Liu Fuxia(刘福霞), et al. J. Fuel Chem. Tech. (燃料化学学 报)[J], 2005, 33: 89~95
- [13] Liu Bing-Hua(刘炳华), Chen Jie-Ping(陈界平), Shen Jian-Yi(沈俭一), et al. J. Mol. Catal. (China)(分子 催化)[J], 2006, 20(6): 556~562
- [14] Oyama S T, Went G T, Lewis K B, et al. J. Phys. Chem. [J], 1989, 93: 6 786 ~ 6 790
- [15] van Steen E, Sewell G S, Makhothe R A, et al. J. Catal. [J], 1996, 162: 220 ~ 229
- [16] Iglesia E, Reyes S C, Madon R J. J. Catal. [J], 1991, 129(1): 238 ~ 256

Characterization of Co-Cu/SiO₂ Catalysts

LIU Bing-hua^{1, 2}, SHANG GUAN Rong-chang¹, SHEN Jian-yi²

(1. Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Department of Chemistry,

Huaiyin Teachers College, Huaian 223000, China;

2. Department of Chemistry, Nanjing University, Nanjing 210093, China)

Abstract: In this study, the catalysts of Co-Cu/SiO₂ series were prepared by sol-gel method, and were characterized by the techniques of TPR, XRD, the titration of O₂ and the measurement of the specific area of BET (S_{BET}). Their catalytic performance for F-T synthesis was also investigated. The experimental results showed that the dispersion of the components of cobalt and copper supported on SiO₂ were all well. The results of O₂ titration indicated that due to the existence of Cu²⁺ in the samples of Co-Cu/SiO₂ the reduction of cobalt species was proceeded easily. TPR results revealed that only cobalt species was reduced via Co³⁺ \rightarrow Co²⁺ \rightarrow Co⁰ process, while for Co-Cu/SiO₂ catalysts, in addition to the reduction of cobalt species, the reduction from Cu²⁺ to Cu[°] was also observed. The improvement in the reducibility of catalyst and the cobalt dispersion contributed a little to the activity of the promoted catalysts for F-T synthesis.

Key words: Co-Cu/SiO₂ catalysts; TPR; XRD; O₂ titration; F-T synthesis