文章编号: 1001-3555(2014)02-0165-09

氧化碳烟的 $MnO_x(0.4)$ - CeO₂ 催化剂表面活性物种研究

林俊敏¹,付名利^{1,2},朱文波¹,叶代启^{1,2,3,*}
(1. 华南理工大学环境与能源学院,广东广州 510006;
2. 广东省大气环境与污染控制重点实验室,广东广州 510006;
3. 大气污染控制广东高校工程技术研究中心,广东广州 510006)

摘要:采用柠檬酸配合燃烧法和共沉淀法制备了 $MnO_x(0.4)$ -CeO₂ 催化剂,用于模拟碳烟的燃烧.通过 XRD、 BET、Raman、H₂-TPR、O₂-TPD 与 XPS 表征催化剂的结构和表面活性物种,并借助原位拉曼研究碳烟的催化氧化 机理.结果表明柠檬酸配合燃烧法制备的 $MnO_x(0.4)$ -CeO₂-CA 催化剂中有更多的 Mn 进入了 CeO₂ 的立方萤石结 构,比表面积更大,氧空位、 Mn^{4+} 和 Ce⁴⁺更多,因而氧化还原性能更好,催化氧化碳烟的活性更高.O⁻在碳烟的氧 化中起重要作用, Mn^{4+} 和 Ce⁴⁺有利于氧化反应的进行,氧空位的增加能提高氧的吸附、迁移和转化能力,促进了 碳烟的氧化.反应路径为 O⁻溢出参与碳烟的氧化,同时产生氧空位,部分晶格氧 O²⁻补充 O⁻,气相氧不断吸附到 氧空位上得到活化生成 O₂⁻, O₂⁻转化为 O⁻(可进一步转化为 O²⁻),O⁻迁移至碳烟颗粒表面参与反应,生成 CO₂. **关键词:** $MnO_x(0.4)$ -CeO₂;碳烟氧化;催化;表面活性物种;机理

中图分类号: 0643.32 文献标志码: A

当前,柴油车因其良好的动力性和经济性等优 势而受到广泛关注, 但其排气中的污染物尤其是碳 烟(soot)对大气环境和人类健康产生威胁^[1-3].颗 粒物过滤器(DPF)是目前柴油车排气碳烟去除的有 效手段, 其关键是高活性的催化剂^[4-5]. MnO₂-CeO,复合氧化物因具有优异的低温催化活性而成 为研究热点^[6-7]. 在碳烟的催化氧化中, Aneggi 等^[8]的研究表明储氧容量发挥重要作用. 然而, Shimizu^[9]、Lopez^[1]和 Makkee 等^[10]的研究则表明 催化剂的活性与储氧容量关系不大,参与反应的活 性氧物种才是碳烟催化氧化的关键因素. 吴晓东 等^[11-12]和单文娟等^[7]指出将 Mn 引入 Ce 的晶格 中,既提高了活性氧的迁移能力,也提高了晶格氧 的溢出能力,因此强化了碳烟的催化氧化. Machida 等[13]利用同位素追踪法研究氧物种的迁移转化过 程,结果表明气相氧能够吸附到催化剂表面上,进 而转化为活性氧,参与碳烟的氧化;同时指出催化 剂中的晶格氧在碳烟的催化氧化中贡献更大. 另 外, Lopez 等^[14]利用同位素脉冲技术研究了铈基催 化剂氧化碳烟的过程机制,发现气相氧并未直接参 与碳烟的氧化,催化剂中的活性氧首先释放并迁移 至碳烟表面将其氧化,同时,催化剂表面产生氧空 位,气相氧吸附到氧空位上补充被消耗的活性氧. 由此可见,活性氧物种、氧空位及氧的迁移转化能 力等涉氧参数在碳烟的催化氧化中发挥重要作用. 但是,目前对催化剂氧化碳烟的决定因素以及反应 路径的认识还存在着争论,且原位检测手段大多针 对活性氧物种,缺乏对氧空位的实时监控与分析.

前期研究工作发现在系列 Mn/(Mn+Ce)(摩尔 比)的 MnO_x-CeO₂ 复合氧化物中 MnO_x(0.4)-CeO₂ 具有最高的碳烟氧化活性^[15].因此,我们用柠檬酸 配合燃烧法和共沉淀法制备了 MnO_x(0.4)-CeO₂、 MnO_x和 CeO₂催化剂,通过多种表征手段研究催化 剂的结构与表面性质,探讨催化剂表面活性物种与 催化活性的关系,寻找活性因子,并借助原位拉曼 检测手段,提出 MnO_x-CeO₂氧化碳烟的反应路径.

1 实验部分

1.1 催化剂的制备

柠檬酸配合燃烧法(CA):以Ce(CH₃COO)₃,

- 作者简介:林俊敏(1988-),男,硕士研究生.
- * 通讯联系人, E-mail: cedqye@ scut. edu. cn.

收稿日期: 2013-12-26; 修回日期: 2014-02-15.

基金项目:国家自然科学基金(51108187,50978103)和中央高校科研业务费(2012ZM0041).

 $5H_2O$ 和 Mn(CH₃COO)₂ · 4H₂O 为前驱物,按照金 属元素的摩尔比 Mn/(Mn+Ce)为 0.4 配制溶液.具 体制备过程参考前期研究工作^[16].

共沉淀法(CP):以 Ce(CH₃COO)₃·5H₂O 和 Mn(CH₃COO)₂·4H₂O 为前驱物, 氨水(NH₃·H₂O)为沉淀剂, 按照金属元素的摩尔比 Mn/(Mn+Ce)为0.4 配制溶液.具体制备过程参考前期研究 工作^[15-17].

1.2 催化剂的表征

比表面积 (SSA, BET 法)采用美国 Micromeritics 仪器公司 ASAP 2020N 全自动比表面积及微孔 孔隙分析仪测量,样品量为 100 ~ 300 mg,在 300 ℃抽真空预处理4 h,以 N₂ 为吸附质,于-196 ℃进 行测定.

XRD 采用德国 Bruker D8 Advance X 射线衍射仪 测定,实验条件为铜靶,入射线波长 0.15418 nm, Ni 滤波片,管压 40 kV,管流 40 mA,扫描步长 0.02°.

Raman 测试使用法国 HJY LabRAM Aramis 显 微激光拉曼光谱仪,应用 HeNe 激光器测定.

H₂-TPR 在美国 Micromeritics AutoChem II 2920 全自动程序升温化学吸附仪上完成.载气组成为 10% H₂/Ar,流速为 50 mL·min⁻¹,催化剂用量为 150 mg. 先用 Ar 气在 300 ℃下吹扫 30 min 后降温至 60 ℃,切换气路为 10% H₂/Ar,待基线稳定后从 60 ℃升至 900 ℃进行还原,升温速率为 10 ℃·min⁻¹.

 O_2 -TPD 测试使用的仪器同 H₂-TPD. 载气组成 为 5% O₂/He, 流速为 50 mL · min⁻¹, 催化剂用量为 200 mg. 先用 He 气在 300 ℃下吹扫 30 min, 待自然 降温至 60 ℃, 切换至 5% O₂/He 使样品吸附 60 min,待基线稳定后继续用 He 气吹扫样品,并从 60 ℃升温至 900 ℃ 进行脱附实验, 升温速率为 10 ℃ · min⁻¹.

XPS 运用美国 Thermo-VG Scientific ESCALAB 250 光电子能谱仪测定,条件为 Mg Kα 射线(hv = 1 253.6 eV), C1s 校准结合能为 284.6 eV.

原位 Raman 表征在 532 nm 波长下测定.首先 将碳烟与催化剂以1:9 的质量比均匀混合,然后 取部分样品置于原位反应池中,采集不同反应温度 下的 Raman 光谱.反应气体组成为纯 Ar 或10% O₂+ Ar,气体流量为100 mL·min⁻¹.

1.3 催化剂的活性测试

实验装置、模拟碳烟和测试条件参见前期研究 工作^[18]. T_i为碳烟的起燃温度,即为当反应器尾 气中 CO₂ 浓度达到 5 000×10⁻⁶ 时的温度; T_m 为 CO₂ 的浓度达到最大值时的温度^[12]; 并用 $\Delta T = T_m - T_i$ 表示碳烟的燃烧速率, ΔT 越小, 燃烧速率越快.

2 结果与讨论

2.1 活性评价

根据活性评价结果,各催化剂的 T_i、T_m和△T 归纳于表 1. 由表 1 可知将 MnO_x 引入 CeO₂ 后碳烟 的起燃温度降低,催化剂的活性提高. MnO_x(0.4)-CeO₂-CP 对应的起燃温度为 328 ℃,比单一 CeO₂-P 或 MnO_x-P 降低 52 ℃,降幅不明显,且碳烟燃烧速 度稍微减慢. MnO_x(0.4)-CeO₂-CA 的起燃温度低至 218 ℃,比单一 CeO₂-CA 和 MnO_x-CA 分别降低 170 和 103 ℃,与 MnO_x(0.4)-CeO₂-CP 和 MnO_x-CA 相 比,碳烟燃烧速度明显加快.总之,共沉淀法(CP) 与柠檬酸配合燃烧法(CA)制备的 MnO_x(0.4)-CeO₂ 的催化活性均优于单一组分 MnO_x 和 CeO₂,其中 CA 制备的复合氧化物活性最高,可能是复合氧化 物(特别是 CA 法制备的)具有更优异的表面性质, 可促进碳烟的燃烧.

表 1 MnO_x-CeO₂ 上碳烟氧化的 T_i、T_m 和 \triangle T

Table 1 T_i, T_m and $\triangle T$ for soot oxidation on MnO_x-CeO₂

catalysts							
Soot+Catalysts	T_i / C	$T_m/^{\circ}C$	$\Delta T / C$				
Blank(without catalyst)	460	573	113				
CeO ₂ -P	380	560	180				
MnO_x -P	380	542	162				
$MnO_x(0.4)$ -CeO ₂ -CP	328	520	192				
CeO ₂ -CA	388	411	23				
MnO_x -CA	321	392	71				
$MnO_x(0.4)$ -CeO ₂ -CA	218	275	57				

2.2 XRD 和 SSA

图1 是催化剂的 XRD 谱图(a) 以及比表面积和 平均晶粒尺寸谱图(b),从 XRD 图中可以看出 CeO₂-CA/P 均呈现良好的立方萤石结构^[1-6].引入 Mn 后, MnO_x(0.4)-CeO₂-CA/CP 都只观测到 CeO₂ 的立方萤石相.即 MnO_x 复合到 CeO₂ 中可形成萤石 结构的固溶体^[11-12, 15, 19].根据图 1 (a), MnO_x (0.4)-CeO₂-CA 中 CeO₂ 的特征 衍射 峰较 MnO_x (0.4)-CeO₂-CP 的宽化和钝化;又经计算得 MnO_x (0.4)-CeO₂-CA 的晶格参数(0.5375 nm)较单一 CeO₂(0.5402 nm)变化较大,而 MnO_x(0.4)-CeO₂-CP(0.5393 nm)则变化不明显^[20-21],这均表明 CA 制备的 MnO_x(0.4)-CeO₂ 复合氧化物要比 CP 制备 的催化剂复合程度更高,更多 Mn 取代了 Ce 导致 晶格缺陷增多,使峰高和峰宽变化更大.

从图1(b)可知单一催化剂的比表面积低至 5.7~19.0 m² · g⁻¹, 与之相比, $MnO_x(0.4)$ -CeO₂

图 1 MnO_x-CeO₂的 XRD(a)和 SSA/d^a(b)图谱

Fig. 1 XRD patterns (a) and Specific surface area(SSA)/average crystallite size(d^a) (b) of MnO_{*}-CeO₂ catalysts

2.3 Raman

图 2 是催化剂的 Raman 谱图,图 2 (a)中 463 cm⁻¹ 附近的峰归属于 CeO₂^[11,22],630、644 和 665 cm⁻¹ 的 峰 分 别 归 属 于 Mn₃O₄、 MnO₂ 和 Mn₂O₃^[23].与单一氧化物相比,MnO_x(0.4)-CeO₂-CA 中的 CeO₂ 和 MnO_x 特征峰都出现宽化现象,半 高宽分别升至 25.3、50.0 cm⁻¹,且其中 CeO₂ 衍射 峰向低波数偏移;而 MnO_x(0.4)-CeO₂-CP 则无宽化 和偏移现象. 推测 MnO_x(0.4)-CeO₂-CA 中 Mn 很好 地进入 CeO₂ 晶格中,复合程度高,产生的氧空位 更多(图 2b). 这再次印证了 XRD 和 BET 的检测 结果.

图 2(b) 是 MnO_x(0.4)-CeO₂-CA/CP 的 Raman 局部谱图, MnO_x(0.4)-CeO₂-CA 在 570 cm⁻¹ 处有 一峰, 归属于 CeO₂ 晶格中的氧空位^[24], 而在 MnO_x(0.4)-CeO₂-CP并未观察到此现象. 这是因为

图 2 MnO_x-CeO₂ 的 Raman 图谱, (a) 全图(b) 局部图 Fig. 2 Raman spectra of MnO_x-CeO₂ catalysts, (a) total graph(b) topography

CA 法制备的复合氧化物中,更多 Mn 进入 CeO₂ 晶格后,形成了更多氧空位,可促进氧物种的迁移和转化,进而提高催化剂的活性^[7,13],这解释了 MnO_x(0.4)-CeO₂-CA 具有最高活性(表1).

2.4 O₂-TPD 和 H₂-TPR

图 3 是催化剂的 O_2 -TPD 和 H_2 -TPR 图. 在 O_2 -TPD 图中,单一 MnO_x -CA/P 对应 100 ℃ 附近的峰 归属于分子吸附氧(O_2^-),400~600 ℃ 的脱附峰是 原子吸附氧(O^-),大于 700 ℃ 的峰为晶格氧 (O^{2-})^[12,18], MnO_x -P 中没有发现 O⁻.单一 CeO₂-CA/P 中只观察到 O₂⁻.引入 Mn 后催化剂的氧脱附 峰面积有很大提高,且脱附温度向低温方向偏移, 预示催化剂的氧化还原性能提高,其中 CA 法制备 的 MnO_x (0.4)-CeO₂ 催化剂最为显著. 结合 XRD、 BET 和 Raman 测试结果可知, Mn 进入 CeO₂ 导致 比表面积增大,同时晶格缺陷增多,形成了更丰富 的氧物种和氧空位,有利于氧的吸附、迁移和转 化. MnO_x (0.4)-CeO₂-CA 的氧脱附峰往低温偏移最 多,且氧脱附量(特别是 O⁻,见图 3 a)明显大于 MnO_x(0.4)-CeO₂-CP, 而碳烟催化燃烧主要区间也 是在中温区(200~500 ℃, 见表1), 并关联 TPO 活 性测试结果可以推测出 O⁻在催化剂催化氧化碳烟 中起重要作用.

从 TPR 图中可知, MnO_x -CA/P 在 200 ~ 500 ℃ 出现两个明显的还原峰, 分别归属于 Mn_2O_3 还原为 Mn_3O_4 和 Mn_3O_4 还原成 $MnO^{[25]}$. CeO₂-CA/P 在 450 和 800 ℃ 附近的还原峰分别是表面和体相中 Ce⁴⁺还原为 Ce^{3+[26-27]}. 在 $MnO_x(0.4)$ -CeO₂-CP/CA 复合氧化物中, 出现了 3 处相似的峰, 其中低温处 的两个峰(约 210 和 340 ℃)是高价态 Mn 典型的两 步还原^[19], 高温处(约 780 ℃)是体相中 Ce⁴⁺的还 原峰, 与单一氧化物相比还原峰向低温方向偏移且 耗氢量增大. 说明 CeO₂ 中引入 Mn 后, 催化剂的可 还原性提高了, 这与 O₂-TPD 测试结果一致. 虽然 $MnO_x(0.4)$ -CeO₂-CA 与 $MnO_x(0.4)$ -CeO₂-CP 还原 温度相近, 但前者在中温区耗氢量最大, 这印证了 TPO 中 $MnO_x(0.4)$ -CeO₂-CP.

图 3 MnO_x -CeO₂ 的 O₂-TPD(a) 和 H₂-TPR(b) 图 Fig. 3 O₂-TPD (a) and H₂-TPR (b) curves of MnO_x -CeO₂ catalysts

2.5 XPS

对反应前后的 $MnO_x(0.4)$ -CeO₂-CA/CP 催化 剂进行 XPS 测试, 结果列于表 2. $MnO_x(0.4)$ -CeO₂-CA TPO 前后的 O 1s 和 Mn 2p 谱图见图 4, O 1s 图中结合能在 531.77 ~ 532.22 eV 间归属于分 子吸附氧 O₂⁻, 在 529.96 ~ 530.33 eV 间为原子吸 附氧 O⁻, 在 528.84 ~ 529.06 eV 间是晶格氧 O²⁻. Mn 2p 谱图中特征峰 642.6 eV 属于 Mn⁴⁺, 641.2 eV 则为 Mn²⁺和 Mn^{3+[28]}.

由表2可知,在 MnO_x(0.4)-CeO₂-CP 中,

70.6% 的氧物种为 O⁻和 O²⁻, 而这两种氧物种在 $MnO_x(0.4)$ -CeO₂-CA 中的含量为 92%, 这与 O₂-TPD 测试结果一致. 两种方法制备的 $MnO_x(0.4)$ -CeO₂ 中 Ce 都主要以 Ce⁴⁺存在, Mn 也主要以 Mn⁴⁺ 存在. $MnO_x(0.4)$ -CeO₂-CA/CP 反应后, O₂⁻所占比 例增加, O⁻和 O²⁻含量减少, 说明原子吸附氧和晶 格氧参与反应被消耗掉. $MnO_x(0.4)$ -CeO₂-CP 反应 后,表面 Ce、Mn 含量减少, Mn⁴⁺/(Mn³⁺+Mn²⁺)比 例 减少, Ce⁴⁺/Ce³⁺比例增加, 这表明反应过程中 $MnO_x(0.4)$ -CeO₂-CP 中 Ce、Mn 迁入体相,且表面 Mn^{4+} 向低价态 $Mn^{n+}(n=3 \pm 2)$ 转化,但 Ce³⁺向高价 态 Ce⁴⁺转化. $MnO_x(0.4)$ -CeO₂-CA 反应后,表面 Ce 含量减少、Mn 却增加, $Mn^{4+}/(Mn^{3+}+Mn^{2+})$ 和 Ce⁴⁺/

Ce³⁺比例均减少,这表明反应过程中 MnO_x(0.4)-CeO₂-CA 中 Ce 迁入体相,而 Mn 却在表面富集,且 表面 Mn⁴⁺和 Ce⁴⁺向低价态 Mnⁿ⁺(*n*=3 或 2)和 Ce³⁺转化.

图 4 反应前后 $MnO_x(0.4)$ -CeO₂-CA 的 XPS 谱图, (a)O1s,(b)Mn 2p Fig. 4 XPS spectra of $MnO_x(0.4)$ -CeO₂-CA before and after TPO,(a)O1s,(b)Mn 2p

		0/at. %		0 Ce	Ce	Mn		
$MnO_x(0.4)$ -CeO ₂	02	0-	O ²⁻	/at. %	/at. %	/at. %	Ce ⁴⁺ /Ce ³⁺	$\mathrm{Mn}^{4+}/(\mathrm{Mn}^{2+}+\mathrm{Mn}^{3+})$
CP-Fresh	29.40	20.00	50.60	66.37	23.84	9.79	3.19	1.38
CP-After TPO	68.40	14.90	16.70	81.53	13.28	5.19	3.90	1.01
CA-Fresh	8.00	41.50	50.50	66.71	25.38	7.91	4.46	1.75
CA-After TPO	49.56	28.85	21.59	67.06	24.65	8.29	3.61	0.68

表 2 XPS 表面成分分析得到的原子比 Table 2 Atomic ratios by XPS surface compositional analysis

综合 XPS 测试结果,并根据电荷守恒原理,可 以初步推出:1) $MnO_x(0.4)$ -CeO₂-CP 中, Mn^{4+} 是唯 一的电子受体被还原,同时发生 O²⁻和 Ce³⁺分别向 O⁻和 Ce⁴⁺转化; $MnO_x(0.4)$ -CeO₂-CA 中, Mn^{4+} 和 Ce⁴⁺均作为电子受体被还原,同时发生 O²⁻向 O⁻转 化.2) O⁻和 Mn^{4+} 在反应中被消耗可直接关联碳烟 氧化,故可视为主要活性物种,这种情况在 MnO_x (0.4)-CeO₂-CA 中更为显著;结合 Raman 和 O₂-TPD、H₂-TPR 测试结果, $MnO_x(0.4)$ -CeO₂-CA 中 形成了更多氧空位,促进了活性物种 O⁻的迁移和 转化与 Mn^{4+} 的转化,因而活性最高^[7,13].

2.6 原位 Raman

为了更好地研究碳烟在 MnO_x(0.4)-CeO₂ 催化

剂上的催化氧化路径,分别在纯 Ar(I) 和 10% O_2 + Ar(I) 气氛下,对 CP 法和 CA 法制备的复合氧化 物与碳烟的反应过程进行原位 Raman 测试,结果如 图 5 所示.

相关文献指出 640 和 445 cm⁻¹ 处特征峰的面 积之比(A_{440}/A_{445})决定了催化剂中氧空位的浓 度^[29],对图 5 中各谱图的特征峰面积进行计算, 结果列于表 3. 从表 3 中可以看出, Ar 气氛下, MnO_x(0.4)-CeO₂-CP/CA 的氧空位浓度都随着温度 的升高而增大,达到最大值后保持基本恒定,可能 归因于在无氧气氛下催化剂中氧物种的溢出,使得 氧空位浓度增大. MnO_x(0.4)-CeO₂-CA 在 200 ℃时 氧空位浓度即达最大值,低于 MnO_x(0.4)-CeO₂-CP

图 5 $MnO_x(0.4)$ -CeO₂-CA/CP 碳烟混合物在 Ar 或 10% O₂+Ar 气氛中的原位 Raman 谱图 Fig. 5 In situ Raman spectra of $MnO_x(0.4)$ -CeO₂-CA/CP soot mixture under Ar or 10% O₂+Ar

表 3 Raman 谱图中 A_{640}/A_{445} 的比值 Table 3 The ratios of A_{640}/A_{445} in Raman spectra

Temperature ∕℃	$MnO_x(0.$	$MnO_x(0.4)$ -CeO ₂ -CP		$MnO_x(0.4)$ -Ce O_2 CA		
	Ar	$10\% O_2 + Ar$	Ar	$10\%\mathrm{O_2}\text{+}\mathrm{Ar}$		
30	0.11	0.11	0.11	0.11		
100	0.14	0.24	0.34	0.24		
200	0.15	0.22	0.66	0.21		
300	0.32	0.24	0.69	0.12		
400	0.44	0.05	0.57	0.21		
500	0.44	0.76	0.57	0.23		
600	0.41	0.74	0.56	0.21		

的 400 ℃;10% O₂+Ar 气氛下,两种催化剂的氧空 位浓度随着温度的升高变化趋势一致,即先增大后 减小,再增大,最后保持不变.推测在低温条件下, 催化剂中的氧物种首先得到释放,氧空位浓度增 大;中温区, 气氛中大量的氧源源不断地吸附到催 化剂表面上, 使得氧空位减少, 这部分氧物种活化 后溢出参与碳烟的氧化; 当温度进一步升高时氧空 位再次增多. 同样地 MnO_x(0.4)-CeO₂-CA 中温区氧 空位浓度最小时所对应的温度低于 MnO_x(0.4)-CeO₂-CP, 与 TPO 结果相一致.

综上所述,并根据氧化还原循环机制,催化剂 表面氧物种首先溢出,同时产生氧空位,气相氧不 断吸附至催化剂表面氧空位上得到活化生成 O_2^- , $O_2^-转化为 O^-$,进一步转化为晶格氧 $O^{2-[30]}$,这些 为活性氧物种和高价态 Mn^{4+} 活性物种参与反应准 备了条件.

图 6 为碳烟催化氧化可能的路径图,具体过程 为 0⁻溢出并迁移至碳烟表面生成 C(O),同时产生 氧空位,部分晶格氧 0²⁻活化逸出^[12]补充 0⁻,气 相氧吸附到氧空位上不断补充被消耗的活性氧物 种,使反应持续进行.

图 6 MnO_x(0.4)-CeO₂-CA/CP 催化氧化碳烟路径 Fig. 6 The pathway for MnO_x(0.4)-CeO₂-CA/CP catalyzes soot oxidation

3 结论

3.1 CP 和 CA 法制备的 $MnO_x(0.4)$ -CeO₂ 都形成了具有立方相萤石结构的固溶体,催化活性均比单一 CeO₂ 和 MnO_x 高,其中 $MnO_x(0.4)$ -CeO₂-CA 的催化活性最高.

3.2 与 MnO_x (0.4)-CeO₂-CP 相比, MnO_x (0.4)-CeO₂-CA 中有更多 Mn 取代 Ce 进入 CeO₂ 晶格,形成了小晶粒尺寸、大比表面积的优良固溶体,催化剂氧空位、氧物种数量(尤其是 O⁻)和表面 Mn⁴⁺增多,强化了活性氧的释放,进而促进碳烟氧化.

参考文献:

- Bueno-López A. Diesel soot combustion ceria catalysts
 [J]. Appl Catal B, 2014, 146: 1-11.
- [2] Pahalagedara L, Sharma H, Kuo C H, et al. Structure and oxidation activity correlations for carbon blacks and diesel soot[J]. Energ Fuel, 2012, 26: 6757-6764.
- [3] Sekine Y, Koyama H, Matsukata M, et al. Plasma-assis-

ted oxidation of carbon particle by lattice oxygen on/in oxide catalyst[J]. Fuel, 2013, 103: 2-6.

- [4] Kumar P A, Tanwar M D, Bensaid S, et al. Soot combustion improvement in diesel particulate filters catalyzed with ceria nanofibers [J]. Chem Eng J, 2012, 207/208: 258-266.
- [5] Russo N, Fino D, Saracco G, et al. Promotion effect of Au on perovskite catalysts for the regeneration of diesel particulate filters [J]. Catal Today, 2008, 137: 306-311.
- [6] Wu X D, Lee H R, Liu S, et al. Sulfur poisoning and regeneration of MnO_x-CeO₂-Al₂O₃ catalyst for soot oxidation[J]. J Rare Earth, 2012, **30**: 659–664.
- [7] Shan W J, Ma N, Yang J L, et al. Catalytic oxidation of soot particulates over MnO_x-CeO₂ oxides prepared by complexation-combustion method[J]. J Nat Gas Chem, 2010, 19: 86–90.
- [8] Aneggi E, De Leitenburg C, Dolcetti G, et al. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO₂ and CeO₂-ZrO₂[J]. *Catal Today*, 2006, **114**: 40-47.

第28卷

- [9] Shimizu K, Kawachi H, Satsuma A. Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst[J]. Appl Catal B, 2010, 96: 169-175.
- [10] Setiabudi A, Chen J, Mul G, et al. CeO₂ catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion [J]. Appl Catal B, 2004, 51: 9–19.
- [11] Wu X D, Liu S, Weng D, et al. MnO_x CeO₂ -Al₂O₃ mixed oxides for soot oxidation: Activity and thermal stability [J]. J Hazard Mater, 2011, 187: 283 – 290.
- [12] Liang Q, Wu X D, Weng D, et al. Oxygen activation on Cu/Mn-Ce mixed oxides and the role in diesel soot oxidation[J]. Catal Today, 2008, 139: 113-118.
- [13] Machida M, Murata Y, Kishikawa K, et al. On the reasons for high activity of CeO₂ catalyst for soot oxidation
 [J]. Chem Mater, 2008, 20: 4489-4494.
- [14] Guillén-Hurtado N, García-García A, Bueno-López A. Isotopic study of ceria-catalyzed soot oxidation in the presence of NO_x[J]. J Catal, 2013, 299: 181–187.
- [15] Zhang Ming(张明), Fu Ming-li(付名利), Wu Jun-liang(吴军良), et al. Characteristic of surface oxygen species and catalytic property on MnO_x-CeO₂ for soot combustion[J]. J Chinese Soc Rare Earth(中国稀土学 报), 2011, 29: 303-309.
- [16] Fu M L, Yue X H, Ye D Q, et al. Soot oxidation via CuO doped CeO₂ catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis[J]. Catal Today, 2010, 153: 125-132.
- [17] Fu Ming-li(付名利), Wang Ke-liang(王克亮), Yu Run-peng(于润芃), et al. Soot oxidation in NO atmosphere via MnO_x-CeO₂ prepared with co-precipitation[J]. *Chinese J Inorg Chem*(无机化学学报), 2012, 28: 1593-1600.
- [18] Ouyang Jie-hong(欧阳杰宏), Lin Jun-min(林俊敏), Liu You-fa(刘有发), et al. Studies on the active oxygen species of Cu_{0.05}Ce_{0.95}O catalyst for soot combustion-promoting effect of plasma [J]. China Environmental Science(中国环境科学), 2013, **33**: 243-250.
- [19] Jia L W, Shen M Q, Wang J, et al. Redox behaviors and structural characteristics of Mn_{0.1}Ce_{0.9}O_x and Mn_{0.1}Ce_{0.6}Zr_{0.3}O_x[J]. J Rare Earth, 2008, 26: 523-527.
- [20] Shen Q, Lu G Z, Du C H, et al. Role and reduction of NOx in the catalytic combustion of soot over iron-ceria mixed oxide catalyst [J]. Chem Eng J, 2013, 218: 164-172.
- [21] Wu X D, Lin F, Xu H B, et al. Effects of adsorbed and

gaseous NO_x species on catalytic oxidation of diesel soot with MnO_x -CeO₂ mixed oxides [J]. Appl Catal B, 2010, **96**: 101-109.

- [22] Sato T, Komanoya T. Selective oxidation of alcohols with molecular oxygen catalyzed by Ru/MnO_x/CeO₂ under mild conditions[J]. *Catal Commun*, 2009, **10**: 1095– 1098.
- [23] Ferrandon M, Carnö J, Järås S, et al. Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation[J]. Appl Cataly A, 1999, 180: 141–151.
- [24] Zhang Z L, Han D, Wei S, et al. Determination of active site densities and mechanisms for soot combustion with O₂ on Fe-doped CeO₂ mixed oxides [J]. J Catal, 2010, 276: 16-23.
- [25] Liu S, Wu X D, Weng D, et al. Combined promoting effects of platinum and MnO_x-CeO₂ supported on alumina on NO_x-assisted soot oxidation: Thermal stability and sulfur resistance[J]. Chem Eng J, 2012, 203: 25–35.
- [26] Krishna K, Bueno-López A, Makkee M, et al. Potential rare earth modified CeO₂ catalysts for soot oxidation[J]. Appl Catal B, 2007, 75: 189–200.
- [27] Krishna K, Bueno-López A, Makkee M, et al. Potential rare-earth modified CeO₂ catalysts for soot oxidation part II: Characterisation and catalytic activity with NO + O₂
 [J]. Appl Catal B, 2007, 75: 201–209.
- [28] Wu X D, Liu S, Weng D, et al. Textural-structural properties and soot oxidation activity of MnO_x-CeO₂ mixed oxides[J]. Catal Commun, 2011, 12: 345-348.
- [29] Jiang H, Zhao J, Jiang D, et al. Hollow MnO_x-CeO₂ nanospheres prepared by a green route: A novel low-temperature NH₃-SCR catalyst[J]. Catal Lett, 2014, 144: 325-332.
- [30] Liotta L F, Ousmane M, Di Carlo G, et al. Total oxidation of propene at low temperature over Co₃O₄-CeO₂ mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity [J]. Appl Catal A, 2008, 347: 81-88.

LIN Jun-min¹, FU Ming-li^{1,2}, ZHU Wen-bo¹, YE Dai-qi^{1,2,3,*}

(1. College of Environment and Energy, South China University of Technology, Guangzhou 510006, China;

2. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou

510006, China;

3. Guangdong High Education Engineering Technology Research Center for Air Pollution Control, Guangzhou 510006, China)

Abstract: Citric acid complex method and coprecipitation method were utilized for the preparation of $MnO_x(0.4)$ -CeO₂ catalysts towards model soot oxidation. The structure properties and surface reactive species on the catalysts were characterized by XRD, BET, Raman, H₂-TPR, O₂-TPD and XPS. The soot catalytic oxidation mechanism was investigated by in situ Raman spectra. The results showed that $MnO_x(0.4)$ -CeO₂-CA catalyst synthesized with citric acid complex method, with more Mn ions incorporated into the ceria lattice, possessed larger specific surface area, more oxygen vacancies, Mn⁴⁺ and Ce⁴⁺. Thus, MnO_x(0.4)-CeO₂-CA exhibited better redox properties and higher soot oxidation activities. O⁻ was found to play a key role in soot oxidation. Mn⁴⁺ and Ce⁴⁺ favored to the redox reaction, and the increase of oxygen vacancies were propitious to the adsorption, migration and transformation of oxygen species, boosting soot oxidation. The reaction path was O⁻ spilled from the catalyst and reacted with soot firstly, oxygen vacancy was formed simultaneously, and then part of the lattice oxygen O²⁻ replenish the consumed O⁻. Gaseous oxygen O₂ adsorbed to the oxygen vacancy and activated to O₂⁻, and then changed to O⁻(can transformed to O²⁻ in the further step), O⁻ migrated to the soot surface and oxidizes it very efficiently in the next cycle, CO₂ was formed subsequently.

Key words: $MnO_x(0.4)$ -CeO₂; soot oxidation; catalysis; surface reactive species; mechanism