文章编号: 1001-3555(2017)05-0472-08

Pd/MIL-101 的制备及非均相催化吲哚 C-H 活化

徐 缓,张茂元,黄 香,史大斌* (遵义医学院药学院,贵州 遵义 563000)

摘要:水热合成 MIL-101,过量浸渍法吸附 Pd(OAc)₂,原位还原 Pd²⁺制得 Pd/MIL-101 催化剂.采用 XRD、XPS、SEM、ICP、HRTEM 和 N₂ 吸/脱附实验对其结构进行表征,催化剂 Pd 纳米粒子尺寸在 1.5~2.5 nm 之间,含量为 1.5%.催化实验表明,Pd/MIL-101 能高效催化吲哚 C₂ 位芳基化,对于活性较差的溴代芳烃,也能得到中等以上的收率,催化剂循环 5 次后仍能保持较高的反应活性,发展了吲哚 C₂ 位衍生物的简单、高效的合成方法.**关键词:**金属有机框架;Pd 纳米粒子;非均相催化;C-H 活化;吲哚

中图分类号: 0643.3 文献标志码: A

含吲哚骨架的分子通常具有一定的生物活性, 如何快速、高效构建吲哚衍生物一直以来是药物化 学的研究热点^[1-3].吲哚衍生物的合成可以通过吲 哚 C—H 键活化直接形成 C—C 键,此类反应通常 使用钯盐作为催化剂,但昂贵的钯盐在均相催化反 应中很难被回收利用^[4-5].相对于均相催化剂而言, 纳米 Pd 非均相催化剂易分离回收,后处理简单, 使反应更加经济环保^[6].因此,开发高效、环境友 好的纳米 Pd 非均相催化剂具有重要意义.

金属有机框架(Metal-Organic Frameworks, MOFs)是一种由金属离子或金属簇与有机桥联配 体通过超分子自组装形成的新型多孔晶体材料,主 要应用于气体储存^[7]、吸附分离^[8]、药物缓释^[9]、 化学传感^[10]和催化^[11]等领域.MOFs通常具有大 的比表面积、高的孔隙率、金属不饱和配位点、高 的热稳定性和化学稳定性等特点^[12-15],基于以上 特点,MOFs可作为金属纳米催化剂的载体,MOFs 周期性的纳米孔道或纳米笼的限阈效应能制备尺寸 可控的金属纳米粒子,孔道对底物分子具有尺寸选 择性.以MOFs作为载体,采用"瓶中造船"法可以 将纳米粒子负载在MOFs孔道中催化有机反 应^[16-17],如Gao等^[18]用化学沉积法将Pd负载在 MOF-5 中制得Pd/MOF-5,催化碘苯与苯乙炔的Sonogashira 偶联反应,产率达 98%. Xu 等^[19]利用 ZIF-8 作为核壳结构,先还原 Au 前驱体,再引入 Ag 前驱体并还原,得到 Au@ Ag/ZIF-8,可以在水相中 催化 NaBH₄ 还原 4-硝基苯酚为 4-氨基苯酚.

Férey 等^[20]报道的 MIL-101(Cr) 金属有机框架 具有大的比表面积、高孔隙率、高的热稳定性,对 水和有机溶剂稳定等特点,其应用被广泛研 究^[21-22].利用 MIL-101 的介孔孔径负载金属纳米颗 粒,可以制备稳定高效的非均相催化剂。目前关于 纳米 Pd 催化吲哚 C—H 活化生成吲哚衍生物的报 道还很少,如 Duan 等^[23]用经修饰含氨基的介孔树 脂(ODDMA)负载纳米钯粒子,制备出粒径1.5 nm 左右的纳米钯非均相催化剂(Pd/ODDMA-MP),催 化吲哚与对甲苯磺酸根二芳基碘在水相中发生 C, 位芳基化,产率最高达94%.我们以 MIL-101 作为 载体,采用过量浸渍法吸附 Pd²⁺,并将 Pd²⁺还原为 Pd 纳米粒子, 制备出 Pd/MIL-101 催化剂. 通过盲 接 C—H 活化合成目标分子是有机化学中原子经济 性很高的反应^[24],我们选择廉价的碘代和溴代芳 烃与N-甲基吲哚发生反应. 研究结果表明, Pd/ MIL-101 能高效催化卤代芳烃与 N-甲基吲哚发生 C, 位芳基化反应, 并且催化剂循环5次后催化活性 依然很高,反应过程中 Pd 纳米粒子几乎无流失.

收稿日期: 2017-08-29;修回日期: 2017-09-10.

基金项目: 国家自然科学基金项目(21362047); 贵州省社会发展科技攻关项目(黔科合 SY[2013]3061); 贵州省科学技术基金项目(黔科合 J 字[2014]2175)资助(This work was supported by the National Natural Science Foundation of China (grant no. 21362047), Science and Technology Foundation of Guizhou Province (grant no. QKHSYZ-2013-3061 and QKHJZ-2014-2175)).

作者简介: 徐缓(1991-), 女, 硕士生(Xu Huan(1991-), female, master degree candidate).

* 通讯联系人, E-mail: sdb007.student@ sina.com.

我们通过催化剂的设计合成及催化吲哚 C₂ 位直接 芳基化,发展了吲哚 C₂ 位衍生物的简单、有效的 制备方法.

1 实验部分

1.1 试剂与仪器

硝酸铬(成都市科龙化工,化学纯);碳酸铯 (西亚试剂,分析纯);丙酮(国药集团化学试剂有 限公司,分析纯);DMF、乙酸乙酯和无水乙醇(成 都市科龙化工,分析纯);二氯甲烷(天津市富宇精 细化工有限公司,分析纯);氟化氢(化学纯)、对 苯二甲酸(分析纯)、碘苯(分析纯)、N-甲基吲哚 (分析纯)、对甲基碘苯(分析纯)、间甲基碘苯(分 析纯)、同硝基溴苯(分析纯)、间甲氧基溴苯(分析 纯)、对甲氧基溴苯(分析纯)和对硝基溴苯(分析 纯)均购自萨恩化学技术(上海)有限公司.

德国 Bruker D8 X-射线衍射仪(XRD), 使用 Cu Kα射线,波长为1.5418Å,测试时设定仪器参数 为管电压 40 kV, 管电流 40 mA, 扫描步长 0.02° (2θ), 步速 17.7 秒; 在 Quantachrome AS-1 MP 仪 器上测试 N₂ 吸-脱附实验,使用高纯 N₂(99.999%) 在 77 K 下 10⁻⁶~1 压力范围内测 N₂ 吸附量并计算 Langmuir 和 BET 比表面积; FEIQuanta 200F 型扫描 电子显微镜 (SEM) 对样品形貌进行表征, 加速电 压为 20 kV,将样品固定在导电胶上并喷金 60 s 后 测试; Jobin Yvon2 分析仪测定电感耦合等离子体原 子发射光谱(ICP-AES),得出金属含量;日本 JE-OLJEM-2010HR 高分辨透射电子显微镜(HRTEM) 观察物质形貌,点分辨率为0.23 nm,晶格分辨率 为0.14 nm, 放大倍数在2.0×107~1.5×106倍, 另 加上10倍光学镜,最高可达1.5×107倍的观察能 力: XPS 测试使用日本岛津公司的 KRATOS Axis Ultra DLD, 使用单色化的 Al Kα 源(Mono Al Kα), 能量:1486.6 eV, 10 mA×15 kV, 束斑大小:700× 300 µm; 扫描模式: CAE, 美国安捷伦公司 DD2-400 核磁共振仪表征化合物结构, CDCl, 为溶剂, TMS 为内标.

1.2 实验步骤

1.2.1 MIL-101 的制备^[20] 在 100 mL 反应釜中 加入 Cr (NO₃)₃ · 9H₂O (2.00 g, 5 mmol), HF (48%, 0.25 g, 5 mmol), 对苯二甲酸(0.823 g, 5 mmol)和 30 mL 去离子水, 以1 ℃/min 的速率升 温至 220 ℃, 在 220 ℃下反应 8 h.反应结束后, 在 1 h 下快速降温至100 ℃, 然后用8 h 缓慢降温至室 温.缓慢降温的目的是使没有反应完全的对苯二甲 酸以大晶体颗粒的形态析出, 以便后面更容易除 去.反应结束后用3 号砂芯漏斗抽滤反应混合物, MIL-101 可以通过漏斗, 而大晶体颗粒对苯二甲酸 不能通过, 过滤除去未反应的对苯二甲酸, 接着滤 液用5 号砂芯漏斗抽滤, 去离子水充分洗涤滤饼, 除去残留的金属离子.

先将 MIL-101 加到 20 mL DMF 中浸泡 2 h, 过 滤烘干后将约1 g MIL-101 加到 50 mL 无水乙醇中, 充分搅拌后将混合溶液移入 100 mL 不锈钢高压反 应釜(聚四氟乙烯内衬),于烘箱中升温至100 ℃并 恒温 20 h,冷却后过滤、洗涤,60 ℃真空干燥.取 干燥样品约0.5 g 加入到 75 mL 30 mmol/L NH₄F 溶 液中,60 ℃搅拌 10 h,冷却过滤,150 ℃真空干燥 12 h,得纯化的 MIL-101 样品.

1.2.2 Pd/MIL-101 的制备^[25]参照文献方法, 采用过量浸渍法制备 Pd²⁺/MIL-101. 称量活化的 MIL-101(500 mg)加到 100 mL 三口烧瓶中,加入 30 mL 丙酮,室温搅拌 0.5 h. 再称量 Pd(OAc)₂ (50 mg)加入 10 mL 烧杯中,加 2 mL 丙酮溶解,搅 拌下将溶液逐滴加入到三口瓶中,大约 15 min 滴 完.将混合物超声 30 min,室温搅拌 24 h,过滤, 依次用丙酮和去离子水洗涤,将吸附在 MIL-101 表 面的少量 Pd²⁺冲洗干净,直至滤液透明无色,150 ℃真空干燥 12 h,得 Pd²⁺/MIL-101.

我们采用 NaBH₄ 还原 Pd²⁺:取干燥的 Pd²⁺/ MIL-101 固体,研磨均匀.称量 NaBH₄(500 mg)加 入 50 mL 烧杯中,冰水溶解,然后将 Pd²⁺/MIL-101 固体粉末缓慢加入到 NaBH₄ 冰水溶液中,大约 30 min 加完,静置 12 h,过滤并用去离子水洗涤,洗 涤至滤液无色,150 ℃真空活化 12 h,得 Pd/MIL-101, 封装备用.

1.2.3 吲哚 C₂ 位芳基化反应典型实验操作 称 取取代卤苯(1.2 mmol)、N-甲基吲哚(1 mmol)、醋 酸铯(2 mmol)、0.05 g Pd/MIL-101(以 Pd 计算 0.75 mg)依次加入到 20 mL 反应试管中,加入 2 mL 无水 DMF, 120 ℃油浴反应 24 h. 待反应液冷却至 室温,用20 mL 乙酸乙酯萃取,分离有机层,重复 3 次,合并有机相,分别用蒸馏水和饱和食盐水洗涤 有机相,无水 Na₂SO₄ 干燥. 产物经硅胶柱层析分 离纯化,洗脱剂为石油醚:乙酸乙酯=10:1,¹H NMR 和¹³C NMR 表征产物结构.

2 结果与讨论

2.1 MIL-101 的表征

2.1.1 MIL-101 的粉末 XRD 和 SEM 分析 图 1为 MIL-101 的XRD图. 曲线(a) 为通过单晶CIF数

据模拟出的 MIL-101 的 XRD 图,曲线(b)为合成的 晶体颗粒 XRD 图,通过比较两组峰的峰型,两者的 主要衍射峰吻合较好,说明合成的晶体晶型没有改 变,具有很高的纯度.相对峰强的少许差异,可能 是由于合成材料孔道中包含了 DMF 溶剂分子造成 的.图 2 是 MIL-101 在 1 μm 尺度下的 SEM 图,由 图可知, MIL-101 呈八面体型,颗粒大小均一.

图 2 MIL-101 的扫描电镜图 Fig. 2 SEM images of MIL-101

2.1.2 MIL-101 在 77 K 的 N₂ 吸-脱附测试 图 3 为 MIL-101 在 77 K 下 N₂ 吸附-脱附等温线.可以看

出,这种吸附等温线属于一种典型的 Type I 型吸 附等温线,属于微孔结构的吸附.在相对压力较小 (P/P₀<0.2)的时候,吸附量迅速增加并趋向于饱 和,这是由微孔填充引起的.在相对压力大于 0.2 以后,就会出现一个平台,吸附量缓慢上升,最后 达到一个大气压,吸附量达到 900 cm³ · g⁻¹.脱附 曲线与吸附曲线基本重合,没有产生滞后现象.通 过 BET 方程计算出的总比表面积为 3 080 m² · g⁻¹, 与文献报道一致^[20].

2.2 Pd/MIL-101 的表征

2.2.1 Pd/MIL-101 的 Pd 含量和化合价测试 Pd 的含量通过 ICP-AES 测试, Pd 含量为1.5%.使用 X 射线光电子能谱(XPS)测试 Pd 的价态,如图 4 所示,可以得到零价态Pd的3*d*_{5/2}和3*d*_{3/2}的峰值,

图 4 Pd/MIL-101 的 XPS 光谱图 Fig. 4 XPS spectrum of Pd/MIL-101

分别对应 334.8 和 340.1 eV,由此可知, Pd/MIL-101 中 Pd 主要以还原态存在,即为零价 Pd. 2.2.2 Pd/MIL-101 的 HRTEM 和 XRD 测试 Pd/ MIL-101 的高分辨投射电镜图显示(图 5),在 10

图 5 Pd/MIL-101 的 HRTEM 图 Fig. 5 HRTEM images of Pd/MIL-101

中, Pd 纳米粒子粒径在1.5~2.5 nm 之间, 没有发 生团聚, 未发生团聚的微小颗粒可能更具有催化活 性. 由图 7 所知, 曲线(a) 为通过单晶数据模拟出 的 MIL-101 的 XRD 图, 曲线(b) 为 Pd/MIL-101 的 XRD 图, 通过比较可以看出, 两者的主要衍射峰吻 合较好, 说明负载纳米 Pd 后 MIL-101 的晶型没有 发生改变, 框架结构完好. 但是图中并没有检查到 Pd 纳米粒子峰, 可能是由于 Pd 含量较低(1.5%) 造成的.

2.3 催化反应

2.3.1 反应条件的优化 我们以碘苯和 N-甲基吲 哚作为模板底物对反应条件进行优化,研究不同 碱、溶剂和温度对反应的影响,结果如表 1 所示. 当不加碱, DMF 作溶剂, 120 ℃反应时发现没有目 标产物生成(Entry 1).随后在 DMF 作溶剂, 120 ℃ 反应条件下考察不同的碱,使用三乙胺(Entry 7)和 乙醇钠(Entry 6)时几乎无目标产物生成,使用醋酸 钠(Entry 9)和碳酸钾(Entry 8)时产率较低,分别只 有 20% 和 12%,使用碳酸铯(Entry 3)和醋酸钾 (Entry 2)时产率有所提高,分别为 36% 和 40%, 醋酸锂(Entry 14)时产率为 18%,醋酸铯(Entry 4) 为碱时产率最高,达到 81%.不加催化剂,几乎没 有产物生成(Entry 16).使用 10% 的 Pd/C 作为催 化剂,得到62% 的产率(Entry17).接着考察温度

表1 N-甲基吲哚和碘苯的反应条件优化

Table 1 Optimization of direct arylation of

N-methylindole with PhI^[a]

Entry	Base	Slovent	Temperature ∕℃	Yield ⁄% ^b
1 °	-	DMF	120	0
2	KOAc	DMF	120	40
3	Cs_2CO_3	DMF	120	36
4	CsOAc	DMF	120	81
5	CsOAc	DMF	150	65
6	NaOEt	DMF	120	trace
7	$\mathrm{Et}_3\mathrm{N}$	DMF	120	trace
8	$K_2 CO_3$	DMF	120	12
9	NaOAc	DMF	120	20
10	CsOAc	dioxane	120	trace
11	CsOAc	DCM	120	trace
12	CsOAc	toluene	120	trace
13	CsOAc	THF	120	trace
14	LiOAc	DMF	120	18
15	CsOAc	DMF	130	80
$16^{\rm d}$	CsOAc	DMF	120	trace
17^{e}	CsOAc	DMF	120	62

a. Conditions: *N*-methylindole (1 mmol), iodobenzene (1.2 mmol), catalyst (0.5% Pd), t=24 h, under air; b. Yield of isolated product based on *N*-methylindole; c. No base was added; d. No catalyst was added; e. 10% Pd/C as catalyst. The filtrate was kept on stirring for 24 h.

对反应的影响,当温度上升到130 ℃时(Entry 15), 产率为80%,略有下降.当反应温度上升到150 ℃ 反应时,产物的产率反而下降到65%(Entry 5).温 度升高,可能加速了副反应的发生.最后考察溶剂 对反应的影响,发现溶剂对反应的影响非常大,当 使用二氯甲烷、四氢呋喃、二氧六环及甲苯作溶剂 时,几乎无目标产物生成.所以反应的最优化条件 是:*N*-甲基吲哚(1 mmol),碘苯(1.2 mmol),Pd/ MIL-101(0.5% mol Pd),CsOAc(2 mmol),DMF(2 mL),在120 ℃反应24 h.

2.3.2 合成 1-甲基 2-芳基吲哚的底物拓展 根据 表 1 所得的最佳反应条件扩展底物,如表 2 所示. 首先以不同取代碘苯与 N-甲基吲哚反应,取代

表 2 N-甲基吲哚和取代卤苯反应

Table 2 Direct arylation of N-methylindole with various aryl halides $\space{[a]}$

Entry	Х	R	Product	Yield /% ^b
1	Ι	Н		83
2	Ι	$3-NO_2$		70
3	I	$3-CH_3$		75
4	Ι	$3-OCH_3$		88
5	Ι	$4-CF_3$		72
6	Ι	$4-CH_3$	F	78
7	Br	Н		66
8	Br	$4-CH_3$		68
9	Br	4-F	F	64
10	Br	3-F		61
11	Br	$4-CF_3$		62
12	Br	$3-OCH_3$		69

续表 2

Entry	X	R	Product	Yield /% ^b
13	Br	$4-OCH_3$		66
14	Br	$3-NO_2$		58
15	Br	$3-CH_3$		64
16	Br	$4-NO_2$		60
17	Cl	Н		20
18	F	Н		trace
19°	Ι	н		78

a. Conditions: *N*-methylindole (1 mmol), iodobenzene (1.2 mmol), catalyst (0.5 mol% Pd), t=24 h, under air; b. Yield of isolated product based on *N*-methylindole; c. Cyclic catalysis five times.

碘苯含给电子基的产率明显比吸电子基的产率高, 如含甲氧基的产率为88%(Entry 4),比含三氟甲 基(Entry 5)和硝基(Entry 2)的产率高.随后扩展 取代溴苯与 N-甲基吲哚的底物,由于溴代芳烃较碘 代芳烃的活性低,因此总体的产率都有所降低.如 3-甲氧基碘苯和 3-甲氧基溴苯分别与 N-甲基吲哚 反应,得到的收率分别为88%和69%.如使用活性 更低氯苯为原料,则产率只有20%(Entry 17),使 用氟苯为原料,不发生反应(Entry 18).用碘苯与 N-甲基吲哚的反应考察循环实验,每次实验后过滤 出催化剂,水洗、干燥后150℃真空活化8h,用于 下一次催化.催化循环5次后催化剂依然有很好的 活性,反应产率达78%(Entry 19),只是略低于第 一次反应产率 83%.

2.4 催化后 Pd/MIL-101 的表征

为了考察催化剂的稳定性和金属的流失情况, ICP 测试循环 5 次后的催化剂,结果显示 Pd/MIL- 101 中 Pd 的含量为 1.48%,相比未反应时(1.5%), 含量只是轻微的降低. HRTEM 测试也表明纳米 Pd 仍然很好地分散在 MIL-101 孔道中,如图 6 所示.

图 6 5 次循环催化后的 Pd/MIL-101 的 HRTEM 图 Fig. 6 HRTEM images of Pd/MIL-101 after 5 cycles of catalysis

为考察催化剂的稳定性,测试催化前和5轮催化后催化剂的XRD,如图7所示.曲线(a)为通过

图 7 Pd/MIL-101 的 PXRD Fig. 7 XRD patterns of Pd/MIL-101

(a) simulated patterns from single-crystal structure;

(b) Pd/MIL-101 sample; (c) after 5 runs of catalysis

单晶数据模拟出的 MIL-101 的 XRD 图,曲线(b)为 Pd/ MIL-101 的 XRD 图,曲线(c)为催化循环 5 次 后 Pd/ MIL-101 的 XRD 图,通过比较可以看出,3 者的主要衍射峰吻合较好,说明循环催化后催化剂 的稳定性很好,结构保持完好.

3 结论

以对苯二甲酸和硝酸铬为原料,通过水热合成 结构稳定的介孔材料 MIL-101, 然后通过过量浸渍 Pd²⁺,还原得 Pd/MIL-101 非均相催化剂,通过各种 实验手段表征其结构. 催化研究表明, Pd/MIL-101 作为非均相催化剂能选择性催化 N-甲基吲哚 C, 芳 基化,对于活性较低的溴代芳烃,也能得到中等以 上的收率,并且催化剂循环5次后依然保持较高催 化活性,反应后 Pd 纳米粒子几乎无流失,该研究 发展了吲哚衍生物的简单、高效的合成方法. 与文 献[23]相比,尽管对方实现了水相中 N-甲基吲哚 C2 位芳基化, 但其使用较为复杂的对甲苯磺酸根 二芳基碘作为反应物,且底物扩展较少.相比之 下,我们使用更加廉价的芳基碘和芳基溴作为反应 物,通过直接 C-H 活化实现 N-甲基吲哚 C,位直 接芳基化.研究结果表明, Pd/MIL-101 具有较好的 催化活性,可以预见,该纳米催化剂在非均相催化 领域将会呈现更广泛的前景和应用.

参考文献:

- [1] Yang T, Moreira W, Nyantakyi S A, et al. Amphiphilic indole derivatives as antimycobacterial agents: Structure-activity relationships and membrane targeting properties
 [J]. J Med Chem, 2017, 60(7): 2745-2763.
- [2] Leitch J A, McMullin C L, Mahon M F, et al. Remote C₆-selective ruthenium-catalyzed C-H alkylation of indole derivatives via σ-activation [J]. ACS Catal, 2017, 7 (4): 2616-2623.
- [3] Fortes M P, da Silva P B N, da Silva T G, et al. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents [J]. Eur J Med Chem, 2016, 118: 21–26.
- [4] Liu C, Ding L, Guo G, et al. Palladium-catalyzed direct arylation of indoles with arylsulfonyl hydrazides [J]. Org Biomol Chem, 2016, 14(10): 2824-2827.
- [5] Zhong S, Sun C, Dou S, et al. Pd-catalyzed desulfitative and denitrogenative Suzuki-type reaction of arylsulfonyl hydrazides[J]. RSC Adv, 2015, 5(34): 27029–27033.
- [6] a. Wang L, Yi W, Cai C. Fluorous silica gel-supported perfluoro-tagged palladium nanoparticles: An efficient and reusable catalyst for direct C-2 arylation of indoles [J]. *Chem Commun*, 2011, 47(2): 806–808.

b. Du Jun-chen(杜君臣), Chang Shi-ying(常仕英), Huang Wei-qiang(黄卫强), *et al.* Progress of the Pd catalysts for methane oxidation under low temperature(甲 烷低温氧化 Pd 催化剂的研究进展) [J]. *J Mol Catal* (*China*)(分子催化), 2015, **29**(5): 482-493.

c. Liao Wei-ping (廖卫平), Li Yang (李扬), Zhao Xing-ling (赵星岭), *et al.* Au Pd/SiO₂ catalyst for selective solvent-free oxidation of toluene by dioxygen (Au Pd/SiO₂ 催化剂用于无溶剂条件下分子氧液相氧化甲苯) [J]. *J Mol Catal* (*China*) (分子催化), 2016, **30** (4): 338-345.

- [7] Dinca M, Dailly A, Liu Y, et al. Hydrogen storage in a microporous metal organic framework with exposed Mn²⁺ coordination sites
 [J]. J Am Chem Soc, 2006, 128(51): 16876-16883.
- [8] MlinarA N, Keitz B K, Gygi D, et al. Selective propene oligomerization with nickel (II)-based metal-organic frameworks[J]. ACS Catal, 2014, 4(3): 717-721.
- [9] Horcajada P, Serre C, Maurin G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery
 [J]. J Am Chem Soc, 2008, 130(21): 6774-6780.
- [10] Zhang X, Hu Q, Xia T, et al. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-

organic frameworks [J]. ACS Appl Mater Interfaces, 2016, **8**(47): 32259–32265.

- [11] Wang Li-ping(王丽苹), Wang Gong-ying(王公应).
 Progress in metal-organic frameworks based on the carboxyl ligands as the catalyst(羧基配体金属有机骨架材料作为催化剂的研究进展) [J]. J Mol Catal(China) (分子催化), 2015, 29(3): 275-287.
- [12] Kitagawa S. Metal-organic frameworks (MOFs) [J]. Chem Soc Rev, 2014, 43(16): 5415-5418.
- [13] Zhou H C, Long J R, Yaghi O M. Introduction to metalorganic frameworks [J]. Chem Rev, 2012, 112 (2): 673-674.
- [14] Furukawa H, Ko N, Go Y B, et al. Ultrahigh porosity in metal-organic frameworks [J]. Science, 2010, 329 (5990): 424-428.
- [15] Cui Y, Yue Y, Qian G, et al. Luminescent functional metal-organic frameworks [J]. Chem Rev, 2012, 112 (2): 1126-1162.
- [16] Bowring M A, Bergman R G, Tilley T D. Pt-catalyzed C-C activation induced by C-H activation [J]. J Am Chem Soc, 2013, 135(35): 13121-13128.
- [17] Yuan B, Pan Y, Li Y, et al. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media[J]. Angew Chem Int Ed, 2010, 122 (24): 4148-4152.
- [18] Gao S, Zhao N, Shu M, et al. Palladium nanoparticles supported on MOF-5: A highly active catalyst for a ligand-and copper-free Sonogashira coupling reaction [J]. Appl Catal A-Gen, 2010, 388(1): 196-201.

- [19] Jiang H L, Akita T, Ishida T, et al. Synergistic catalysis of Au@ Ag coreshell nanoparticles stabilized on metalorganic framework[J]. J Am Chem Soc, 2011, 133(5): 1304-1306.
- [20] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309 (5743): 2040-2042.
- [21] Hamon L, Serre C, Devic T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metalorganic frameworks at room temperature [J]. J Am Chem Soc, 2009, 131(25): 8775-8777.
- [22] Lammert M, Bernt S, Vermoortele F, et al. Single- and mixed-linker Cr-MIL-101 derivatives: a high-throughput investigation [J]. Inorg Chem, 2013, 52 (15): 8521-8528.
- [23] Duan L, Fu R, Zhang B, et al. An efficient reusable mesoporous solid-based Pd catalyst for selective C₂ arylation of indoles in water[J]. ACS Catal, 2016, 6(2): 1062-1074.
- [24] Engle K M, Mei T S, Wasa M, et al. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions[J]. Acc Chem Res, 2012, 45 (6): 788-802.
- [25] Pan Y, Yuan B, Li Y, et al. Multifunctional catalysis by Pd@ MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metalorganic framework[J]. Chem Commun, 2010, 46(13): 2280-2282.

Preparation of Pd/MIL-101 as a Heterogeneous Catalyst for C—H Activation of Indoles

XU Huan, ZHANG Mao-yuan, HUANG Xiang, SHI Da-bin*

(School of Pharmaceutical Sciences, Zunyi Medical College, Zunyi 563000, China)

Abstract: MIL-101 was synthesized by hydrothermal method, and Pd/MIL-101 catalyst was prepared by supporting palladium nanoparticles on metal-organic frameworks MIL-101. The microstructure and features of the catalyst were characterized by XRD, XPS, SEM, HRTEM, ICP and N_2 adsorption respectively. The experimental results reveal the Pd nanoparticles on Pd/ MIL-101 range from 1.5 to 2.5 nm, and the content of Pd nanoparticles is 1.5%. The catalytic experiments show that Pd/MIL-101 has a high catalytic activity for the C_2 arylation of indoles. For the poor activity of aryl bromide, the reaction has also middle yield. Moreover, the catalyst could be recycled many times. After 5 runs of catalysis, the catalyst can still maintain high reactivity. This strategy provides a simple, effective method for the synthesis of indole derivatives.

Key words: metal-organic frameworks; Pd nanoparticles; heterogeneous catalysis; C-H activation; indole