文章编号: 1001-3555(2018)05-0454-07

高比表面介孔 LaNiO, 负载纳米 Au 催化剂的研究

孟根图雅1,杨桂萍2,贾美林2*,崔文静1

(1. 内蒙古化工职业学院 化学工程系, 内蒙古 呼和浩特 010010;

2. 内蒙古师范大学 化学与环境科学学院, 内蒙古绿色催化重点实验室, 内蒙古 呼和浩特 010010)

摘要:分别采用纳米铸型法和溶胶-凝胶法制备了系列 LaNiO₃载体,并用沉积-沉淀法制备了系列 Au/ LaNiO₃催化 剂. 对催化剂进行了 XRD、BET、AAS、TEM 和 XPS 等表征,测试了其对 CO 催化氧化活性.实验结果表明,纳米铸型法得到的 LaNiO₃-NCM 具有介孔结构,且比表面积可达 126 m² · g⁻¹,以其为载体制备的 Au/ LaNiO₃-NCM 催化 剂在 30 ℃条件下将 CO 完全转化,活性远高于以传统溶胶-凝胶法制备的 LaNiO₃-SG 为载体的金催化剂. XPS 结果表明该 Au/LaNiO₃-NCM 催化剂表面存在较多的氧化态 Au^{δ+}(0<δ<3)和晶格氧,且活性组分 Au 含量也较高,说明高比表面介孔 LaNiO₃载体有利于提高活性组分 Au 的负载量,从而提高催化剂催化活性.

关键词:纳米铸型法;钙钛矿;Au/N-LaNiO3催化剂;CO催化氧化

中图分类号: 0643.32 文献标志码: A

钙钛矿型复合氧化物 ABO, 不仅具有较高的热 稳定性和化学稳定性,并且由于 B 位离子通常价态 可变,因此具有较多氧空位,与贵金属相结合,可 有效防止贵金属的烧结,提高催化剂活性[1].近年 来,钙钛矿型复合氧化物为载体的纳米金催化剂在 一氧化碳、挥发有机物以及化工厂废气的氧化燃烧 研究中得到了应用^[2]. 文献报道^[3-5], 和简单氧化 物为载体的金催化剂相比,钙钛矿型复合氧化物为 载体的 Au 催化剂具有更好的稳定性. 但目前制备 钙钛矿型复合氧化物多用溶胶凝胶法^[6],该法焙烧 温度高,晶体颗粒大,比表面积小,一般小于 10 m² · g⁻¹,限制了钙钛矿氧化物的应用,因此制 备高比表面的、具有介孔结构的钙钛矿复合氧化物 成为研究热点. 文献报道[7], 纳米铸型法是制备大 比表面积载体的一种重要方法,由于前驱体存在于 模板剂的孔道内,可在焙烧过程中限制颗粒的生 长,从而达到控制颗粒尺寸的效果,去除模板剂后 便得到了含有介孔结构的纳米材料. Duan 等^[8]利用 SBA-15 作为模板剂合成了 LaNiO3催化剂, 比表面 积达 98 $m^2 \cdot g^{-1}$,应用于甲烷部分氧化反应中,800 ℃时 CH₄转化率达到 96%. Wang 等^[9]利用 KIT-6 为 硬模板剂合成了 LaCoO₃, 比表面积达到 270 m² ·

 g^{-1} . 郭谨玮等^[10]利用纳米铸型法制备 LaMnO₃₊₈比 表面积为 45.2 m² · g^{-1} ,其甲烷起燃温度(T₁₀)和半 转化温度(T₅₀)分别为 318 和 480 ℃. 纳米金催化剂 近年来—直是研究的热点. 但是由于载体的比表面 积较小,金负载量低,从而催化剂活性不理想. 我 们希望能以具有高比表面的介孔 LaNiO₃为载体制 备纳米金催化剂 Au/LaNiO₃,利用载体的高比表面 积和介孔结构来提高金的负载量,缓解金颗粒的长 大,提高催化剂活性,而这方面的研究尚未见报道.

1 实验部分

1.1 载体和催化剂的制备

1.1.1 载体的制备 采用纳米铸型法制备介孔 LaNiO₃,具体做法为:将硝酸镧、硝酸镍和柠檬酸 按物质的量比为 $n_{(La)}$: $n_{(Co)}$: $n_{(fr)}$ =1:1:2溶于 乙醇水溶液(V_{Zpp} : V_{x} =3:1),室温搅拌均匀.将 1g硬模板剂 SBA-15 加入上述溶液,室温搅拌 30 min,超声 20 min,80 ℃条件下烘干后研磨,并先 后在 400 和 700 ℃下焙烧 2 h,得到样品表示为 LaNiO₃-NCM.

将 LaNiO₃-NCM 用 2 mol/L 的 NaOH 溶液浸泡 以去除模板剂,然后分别用水和乙醇洗涤,80 ℃条

收稿日期: 2018-06-25; 修回日期: 2018-08-18.

基金项目:内蒙古自治区高等学校科学研究项目 NJZY18281(Foundation Project: Scientific Research projects of the Higher Education Institutions of Inner Mongolia Autonomous Region NJZY18281).

作者简介: 孟根图雅(1984-),女,蒙古族,讲师,从事化工工艺教学和多相催化研究工作(The first author: Menggen tuya, born in 1984, female, Mongolian nationality, lecturer, engaged in chemical process teaching and heterogeneous catalysis study).

^{*} 通讯联系人, E-mail: jml@imnu.edu.cn.

件下烘干,得到的载体表示为 LaNiO₃-NC.

为进行比较,采用传统溶胶-凝胶法制备 LaNiO₃,具体做法为:将硝酸镧、硝酸镍和柠檬酸 按物质的量比为 $n_{(La)}$: $n_{(Co)}$: $n_{(fr)}$ =1:1:2溶于 乙醇水溶液($V_{Z \mbox{\tiny P}}$ × V_{π} =3:1),室温搅拌均匀. 80℃条件下烘干后研磨,并先后在400和700℃下 焙烧2h,得到的载体表示为LaNiO₃-SG.

1.1.2 催化剂的制备 采用沉积-沉淀法制备了金的理论负载量为 2% (质量分数)的纳米金催化剂, 具体做法如下:在锥形瓶中置入一定量的 HAuCl₄ 溶液,加入载体 LaNiO₃,用0.1 mol/L NaOH 溶液调 体系的 pH 至 8,磁力搅拌条件下,70 ℃恒温 2 h, 再陈化 6 h,过滤,洗涤至无 Cl⁻后,60 ℃烘干,250 ℃焙烧 2 h,得到的催化剂分别表示为 Au/ LaNiO₃-SG、Au/LaNiO₃-NC 和 Au/ LaNiO₃-NCM.

1.2 催化剂表征

采用日本理学 X 射线衍射仪对样品进行 X 射 线衍射分析. Cu 靶为发射源, Ka 辐射源(λ = 0.1540 nm), 管压为 40 kV, 管流为 40 mA, 扫描角 度 5°~80°, 扫描速度 10°/min. 样品 N₂吸附-脱附是 在美国麦克公司 ASAP-2020 孔结构比表面积测定 仪测定. 首先将样品以 100 ℃经 5 h 抽真空预处理, 然后在 76.47 K(液氮)下进行静态氮吸附. 金含量 的测定(AAS)在日本日立公司 Z-8000 型塞曼偏光 原子吸收分光光度计上进行. 灯电流 10 mA, 波长 242.8 nm. 采用 TEM 美国 FEI 公司 Tecnai G2 F20 场 发射透射电子显微镜,电压 200 kV,室温条件进行 TEM. 采用美国赛默飞世尔科技公司 ESCALAB 250Xi 电子能谱仪测定 X 光电子能谱(XPS); X 光 电子能谱;采用单色 Al Kα (hv = 1486.6 eV), 功率 150 W, 500 µm 束斑; 采集到的数据用 Casaxps 软 件进行拟合,样品表面的荷电效应校正用 C 1s (284.8 eV)来标定.

1.3 催化剂活性评价

以 CO 催化氧化为探针反应来评价催化剂的活 性.采用小型固定床连续流动反应装置进行 CO 的 氧化反应,反应管为石英玻璃管,内径为 8 mm,将 其放置于加热炉内以便控制反应温度.催化剂用量 为 200 mg,两端填充石英棉,先在空气气氛下 200 ℃活化1h,再对其通入原料气进行 CO 反应活性评 价.最低完全转化温度记作 T₁₀₀(℃),此温度越低, 表明催化剂活性越好.原料气(1%CO、99%空气) 流量为 25 mL/min,使用 GC2014 型气相色谱仪、 TDX-色谱柱, 热导池检测器在线检测反应混合气中 O_2 、 N_2 、CO 的含量.

2 结果与讨论

2.1 活性结果

由图 1 载体和催化剂的活性测试结果可知,不同方法制备的载体均对CO催化氧化有一定的活

性,其中纳米铸造法制备的、未去除模板剂的 LaNiO₃-NCM 载体的活性最差,300 ℃时 CO 转化率 为17.8%;将不同载体负载 Au 后,催化剂的活性 均有明显提升,活性顺序为:Au/LaNiO₃-NCM>Au/ LaNiO₃-NC>Au/LaNiO₃-SG,T₁₀₀分别为 30、60 和 100℃.并且还测试了 SBA-15 模板剂为载体的 Au/ SBA-15 催化剂活性,其T₁₀₀为 230℃,Au/LaNiO₃-NCM 和 Au/LaNiO₃-NC 催化剂活性高与是否除去模 板剂没有太大的关联.

2.2 XRD 结果

从图2可知,不同方法制备的LaNiO3载体在

Fig.2 XRD patterns of different support and catalysts

2θ=22.982°、32.705°、40.380°、46.886°、58.363°、 68.670°和78.246°位置处均出现了衍射峰,与 XRD 标准卡片 PDF(P750279)给出的特征衍射峰基本吻 合,说明溶胶凝胶法和纳米铸型法制备的载体均 形成了钙钛矿型结构,并且晶型较好^[11].负载活 性组分金后,Au/LaNiO₃-SG 催化剂在38.268°、 44.599°、77.547°处有明显的衍射峰,与Au的PDF 标准卡片(D011174)的 2θ 值(38.268°、44.599°、 64.677° 、77.547°和 82.35°)^[12]吻合.而 Au/LaNiO₃-NCM 和 Au/LaNiO₃-NC 催化剂在衍射图中均未出现 Au 的特征峰,这可能是因为纳米铸型法制备的载体比表面积大,从而活性组分金分散良好的缘故^[13-14].

2.3 BET 结果

从图 3 可以看出载体 LaNiO₃-NCM 和 LaNiO₃-NC 在相对压力 0.4~1.0 带有明显毛细凝聚现象,

图 3 载体的 N₂吸附-脱附(左)和孔径分布(右)图

Fig.3 N2 adsorption-desorption isotherm (left) and pore size distribution (right) profiles of supports and catalysts

为 IV 型等温线, 表明 LaNiO₃-NCM 和 LaNiO₃-NC 具 有介 孔 特征, 孔 径 分 布 图 显 示 LaNiO₃-NC M 和 LaNiO₃-NC 载体的孔径分布较窄,平均孔径分别为 4.5 和 5.1 nm, 孔体积为 0.175 和 0.041 cm³ · g⁻¹, 比表面积分别为 126 和 124 m² · g⁻¹,表明纳米铸型 法制备过程中,是否去除模板剂对载体的比表面积 影响不大.而溶胶凝胶法制备的 LaNiO₃-SG 比表面 积仅仅为 10 m² · g⁻¹.表 1 所示负载 Au 后,催化剂 Au/LaNiO₃-NCM 和 Au/LaNiO₃-NC 的比表面积无明 显变化,仍为介孔结构.

表1不同载体和催化剂的 N2吸附-脱附测定结果

	2 1 1	11	5
Sample	BET surface area/(m^2 \cdot $g^{^{-1}})$	BJH pore size/(nm)	Pore Volume/($cm^3 \cdot g^{-1}$)
LaNiO ₃ -SG	10	-	-
LaNiO ₃ -NC	124	5.1	0.041
LaNiO ₃ -NCM	126	4.5	0.175
Au/LaNiO ₃ -SG	17	-	-
Au/LaNiO ₃ -NC	119	6.3	0.246
Au/LaNiO ₃ -NCM	120	4.9	0.198

Table1 N2adsorption-desorption measurement result of different support and catalysts

2.4 AAS 结果

表2为催化剂中金的理论和实际负载量,可以

看出催化剂中活性组分金的实际负载量均低于理论 负载量,特别是 Au/LaNiO₃-SG 催化剂,实际负载

Table 2 Au loading and catalytic performance of different catalysts							
Catalyst	Theoretic content/%	Actual content/%	T ₁₀₀ ∕℃				
Au/LaNiO ₃ -SG	2	1.00	100				
Au/LaNiO ₃ -NC	2	1.40	60				
Au/LaNiO ₃ -NCM	2	1.74	30				
Au/LaNiO ₃ -NCM	1	0.53	140				
Au/LaNiO ₃ -NCM	1.5	1.13	100				

表 2 不同催化剂的 Au 负载量和活性数据

量仅为理论负载量的一半.结合活性结果和 BET 结 果可知,载体 LaNiO₃-SG 的表面积较小,不利于活 性组分的沉积,而 LaNiO₃-NCM 和 LaNiO₃-NC 具有 较大比表面积,不仅增加了活性组分金的实际负载 量,更有利于提高活性组分 Au 的分散度,从而提 升催化剂活性.并且对以 LaNiO₃-NCM 为载体、不 同 Au 负载量的的催化剂进行了 AAS 测试,从实验 结果可知,随着活性组分 Au 负载量的增加,催化 剂活性提高,进一步说明金负载量高催化剂活性好.其中,实际负载量为1%左右的两个催化剂Au/LaNiO₃-SG和Au/LaNiO₃-NCM活性相近,这可能由于载体LaNiO₃-SG和LaNiO₃-NCM本身活性的差异所致.

2.5 TEM 结果

选择了活性差别较大的两个催化剂做了 TEM 测试.图4中A、B、C为Au/LaNiO3-SG催化剂的

图 4 两种催化剂的 TEM 图 Fig.4 TEM images of two catalysts (A-C) Au/LaNiO₃-SG catalyst (D-F) Au/LaNiO₃-NCM catalyst

形貌图,图中钙钛矿型 LaNiO₃尺寸范围为 50~200 nm,其表面可见活性组分 Au 颗粒较大,分布不均 匀,Au 平均粒径为 6~8 nm 左右.图 D、E、F 为 Au/LaNiO₃-NCM 催化剂的形貌图,从图可以看出 载体 LaNiO₃-NCM 钙钛矿结构与 SBA-15 孔道相似, 说明 LaNiO₃-NCM 为介孔结构,这与 BET 测定结果

相符.负载 Au 后,在图 F 中可以观察到均匀的 Au 在 LaNiO₃-NCM 表面高度分散,平均粒径约为 3 nm 左右,与负载 Au 的 LaNiO₃-SG 催化剂相比, Au/ LaNiO₃-NCM 催化剂表面 Au 分散的更好,粒径更 小,负载量更多.结合活性数据,金的负载量高,尺 寸小,催化活性更好,可能是因为介孔结构大大增

加了催化剂的比表面积有关.

2.6 XPS 结果

为进一步考察 Au 的价态与氧物种对催化剂活

图 5 三种催化剂的及 Au 4f 和 O 1s 的能谱图 Fig.5 XPS spectra of Au 4f and O 1s of three catalysts

应 Au^{δ+}($0 < \delta < 3$,或许 Au⁺)和 Au⁰的 4f_{5/2}与 4f_{7/2}谱 峰^[15-16],图 5(1)和表 3 结果可知,Au 以不同价态 存在于 Au/LaNiO₃-NCM、Au/LaNiO₃-NC 和 Au/ LaNiO₃-SG 催化剂中,且 3 种催化剂中氧化态 Au^{δ+} ($0 < \delta < 3$,或 Au⁺)含量均高于 Au⁰的含量;相对于 Au/LaNiO₃-SG 催 化 剂,Au/LaNiO₃-NC 和 Au/ LaNiO₃-NCM 催化剂中氧化态 Au^{δ+}含量相对较高, 这也可能是该催化剂具有较高活性原因之一.由 O 1s能级谱图 5(2)可知 BE 值为 529.1 和 531.2 eV 的位置分别对应的是以 OH 或 CO₃²形式存在的表 面氧(O_s)和晶格氧(O_L)谱峰,说明 Au/LaNiO₃-NCM 和 Au/LaNiO₃-SG 催化剂中均含有 O_s和 O_L,这 与文献报道的相符^[17].从表 3 可知,Au/LaNiO₃-NCM 催化剂晶格氧含量相对较多,晶格氧 O_L比较 稳定且氧化能力强,有利于 CO 的完全氧化而提高 催化剂的活性.

性的影响,对两种催化剂的 O 1s 和 Au 4f 能谱进行

了测定,结果如图 5 中的(1)和(2). 文献报道, BE 值在 87.7 与 88.4 eV 和 84.0 与 84.8 eV 位置分别对

Catalyst	Au 4f BE/(eV)	Oxidation State	Peak Area∕(%)	O 1s BE/(eV)	Oxygen species	Peak Area/(%)
Au/LaNiO3-NCM	84.2	Au ⁰	33.90	529.1	0	40.70
	85.6				O_{S}	40.79
	87.8	${\rm Au}^{\delta +}$	66.08	531.2	0	59 21
	88.4				σĽ	57.21
Au/LaNiO ₃ -NC	84.2	Au ⁰	35.41	529.1	0	52 20
	85.6				0 _s	52.20
	87.8	$\operatorname{Au}^{\delta}$	64.59	531.2	0	47.80
	88.4				ΟL	17.00
Au/LaNiO3-SG	84.2	Au ⁰	36.83	529.1	0	70.15
	85.6				0 _s	
	87.8	$\operatorname{Au}^{\delta}{}^+$	63.16	531.2	0	29.85
	88.4				$O_{\rm L}$	

表 3 三种催化剂的 Au 4f7/2 和 O 1s 的 XPS 结合能结果

2 4 46 10111

3 结论

与溶胶-凝胶法得到的 LaNiO₃-SG 为载体的 Au/LaNiO₃-SG 催化剂相比,以纳米铸型法制备的 具有介孔结构、高比表面 LaNiO₃-NCM 为载体的 Au/LaNiO₃-NCM 催化剂对 CO 氧化表现出较高的活 性,在 30 ℃时,可将 CO 完全转化,比 Au/LaNiO₃-SG 催化剂上的 T₁₀₀降低了 70 ℃.从 BET、TEM、 AAS 和 XPS 表征结果可知,载体负载金颗粒小,具 有较高的比表面积(126 m² · g⁻¹),有利于提高活 性组分 Au 的负载量和分散度,从而提高催化剂活 性;另外高比表面的 Au/LaNiO₃-NCM 催化剂表面 存在较多的氧化态 Au^{δ+}(0<\delta<3)和晶格氧,也是该 催化剂具有较高活性的原因.

参考文献:

- [1] Yan Yao-zong(晏耀宗), Guo Jin-wei(郭谨玮), Chen Ya-zhong(陈亚中), et al. La_{1-x} Ca_x MnO_{3+δ} perovskite catalysts preparation and their catalytic performance for methane combustion(La_{1-x} Ca_x MnO_{3+δ}钙钛矿催化剂制 备及其甲烷催化燃烧性能研究)[J]. J Mol Catal (China)(分子催化), 2015, 29(1): 82-89.
- [2] Qin Yi-hong(秦毅红), Sun Li-guo(孙立国), Zhang Dang-long(张党龙), et al. Preparation of La_xSr_{1-x}FeO₃ catalyst and its performance for catalytic reduction of SO₂ with CO(La_xSr_{1-x}FeO₃催化剂的制备及其催化还原 SO₂ 性能的研究)[J]. J Mol Catal (China)(分子催化), 2016, **30**(1): 54-61.
- [3] Jia Meilin, Menggentuya, Bao Zhaorigetu, et al. The stability study of Au/La-Co-O catalysts for CO oxidation[J]. Catal Lett, 2010, 134(1/2): 87–92.
- [4] a. Jia Mi-lin(贾美林), Tu Ya(图 雅), Sa ga-la(萨嘎拉), et al. Stability of Au/Fe(OH)₃/LaFeO₃ catalyst (Au/Fe(OH)₃/LaFeO₃催化剂的稳定性研究)[J]. Rare Met Mater Engineer(稀有金属材料与工程), 2013, 42(5): 96-970.

b. Zhu Lin-hua(祝琳华), Li Feng-long(李奉隆), Si Tian(司甜), *et al.* Preparation of layered clay-supported gold catalysts and catalytic activity for CO oxidation at room temperature(层状粘土负载的金催化剂制备及其常温催化氧化活性)[J]. *J Mol Catal*(*China*)(分子催化), 2016, **30**(1): 46-53.

[5] a. Jia Mei-ling(贾美林), Li Xu(李旭), Zaorigetu(照日格图), et al. Activity and deactivation behavior of Au/LaMnO₃ catalysts for CO oxidation(Au/LaMnO₃催化剂

在 CO 氧化反应中的活化和钝化行为) [J]. J Rare Earth(稀土学报)(英文版), 2011, **29**(3): 213-216. b. Wang Jiang(王奖), Xu Ai-ju(徐爱菊), Jia Mei-lin (贾美林), et al. Gold supported on Mg-Al layered double hydroxides for selective oxidation of alcohols: the effect of Mg/Al mole ratio(Mg-Al 类水滑石负载金催化醇选择氧化中 Mg / Al 比例的影响) [J]. J Mol Catal(China)(分子催化), 2017, **31**(1): 11-21.

- [6] Omari E, Makhloufi S, Omari M. Preparation by sol-gel method and characterization of Co-doped LaNiO₃ perovskite[J]. Appl Scien, 2008, 8(12): 1-7.
- [7] Xiaohui Deng, Kun Chen, Harun Tüysüz. Protocol for the nanocasting method preparation of ordered mesoporous metal oxides[J]. *Chem Mater*, 2017, 29(1): 40-52.
- Qianlin Duan, Junwen Wang, Chuanmin Ding, et al. Partial oxidation of methane over Ni based catalyst derived from order mesoporous LaNiO₃ perovskite prepared by modified nanocasting method [J]. Fuel, 2017, 193 (4): 112-118.
- [9] Yongxia Wang, Xiangzhi Cui, Yongsheng Li, et al. A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO₃ oxides for CO and NO oxidations [J]. Micro Mes Mater, 2013, 176(1): 8-15.
- [10] Guo Jing-wei(郭谨玮), Cai Jing-wen(蔡静文), Chen Ya-zhong(陈亚中), et al. Preparation of mesoporous LaMnO_{3+δ} perovskite by hard template method and its catalytic performance for methane combustion(硬模板法 制备中孔 LaMnO_{3+δ}钙钛矿及其甲烷燃烧催化性能)
 [J]. Inorg Chem Indus(无机盐工业), 2017, 49(3): 65-69.
- [11] Louloudi A, Papayannakos N. Hydrogenation of benzene on La-Ni and clay supported La-Ni catalysts [J]. Appl Catal A: Gen, 1998, 175(1): 21-31.
- [12] Wang Xiao-li(王晓丽), Wu Gong-de(吴功德), Liu Xian-feng(刘献锋), et al. Selective oxidation of glycerol to glyceric acid catalyzed by supported nanosized Au /Cr₂O₃(负载型纳米 Au/Cr₂O₃催化甘油氧化合成甘油酸)
 [J]. J Mol Catal (China) (分子催化), 2017, 31 (4): 334-340.
- [13] Jia Mei-lin, Shen yue-nian, Li chang-yan, et al. Effect of supports on the gold catalyst activity for catalytic combustion of CO and HCHO[J]. Catal lett, 2005, 99(3/4): 235-239.
- [14] Ulziijargal Nanzad(乌力吉扎日嘎拉), A Gu-la(阿古 拉), Sa Ga-la(萨嘎拉), et al. The Study on preparation, characterization of mesoporous Au/NiO catalysts and their spectral properties(负载型介孔 Au/NiO 催化

剂的制备、表征与光谱特性研究)[J]. J Mol Catal (China)(分子催化), 2013, **27**(1): 31-36.

[15] Lin F, Nobuyuki I, Shogo S. Preparation of Au/TiO₂ catalysts by suspension spray reaction method and their catalytic property for CO oxidation [J]. Appl Catal A: Gen, 2003, 246(1): 87-95.

[16] Zhang Y, Beckers J, Bliek A. Surface properties and catalytic performance in CO oxidation of cerium substituted lanthanum-manganese oxides [J]. Appl Catal A: Gen, 2002, 235(1): 79–92.

Catalytic Performance of Nano Au Catalyst Supported on Mesoporous LaNiO₃ with High Surface Area

Menggentuya¹, YANG Gui-ping², JIA Mei-lin^{2*}, CUI Wen-jing¹

(1. Department of Chemical Engineering, Inner Mongolia Vocational College of Chemical Engineering, Hohhot 010070, China;

 College of Chemistry & Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China)

Abstract: A series of LaNiO₃ supports were prepared by nanocasting and sol-gel method respectively. Au/LaNiO₃ catalysts prepared by deposition-precipitation method were characterized by XRD BET AAS TEM and XPS. The catalytic performance for CO oxidation was investigated. The Au/N-LaNiO₃ catalyst derived from the nanocasting method showed high activity for CO oxidation, with complete transformation of CO at 30 °C. The characterization results demonstrated that LaNiO₃-NCM support with mesoporous structure from nanocasting method exhibited specific surface area as high as 126 m² · g⁻¹. The XPS results implied that the content of oxidized Au^{δ +} (O < δ < 3, or Au⁺), lattice oxygen as well as active species Au was high on the surface of the Au/LaNiO₃-NCM catalyst. This result demonstrated that the mesoporous LaNiO₃ support with high surface area was beneficial for increasing the loading of Au, thus improved the catalytic activity of the catalyst.

Key words: nanocasting method; perovskite; Au/LaNiO₃ catalyst; CO catalytic oxidation