文章编号: 1001-3555(2022)01-0001-11

Pd 改性多活性位点催化剂 NH₃-SCR 脱硝反应机理研究

丁鑫1,李国波2,黄俊1,张春阳1,张亚平2*,王玲2

(1. 国电江苏谏壁发电有限公司, 江苏镇江 212006; 2. 东南大学 能源与环境学院, 江苏南京 210096)

摘要: 低温 SCR 脱硝技术具有效率高、能耗低、无二次污染等优点,是很有前途的脱硝净化技术.我们制备了一系列多活性位点催化剂(Pd_xV_y/TiO_2),并对其 NH₃-SCR 脱硝性能进行了测试分析.结果表明, $Pd_{0.12}V_4/TiO_2$ 催化剂在 250 ℃时可达到接近 100% 的 NO_x转化率和 N₂ 选择性.结合 XRD、TEM、XPS、H₂-TPR、in situ DRIFT 和 DFT 分析,考察了催化剂表面 NO_x 催化脱除机理.所得数据表明,该催化剂对 NH₃、O₂ 和 NO_x等反应气体分子表现出强烈的吸附性能,且均为化学吸附,所有组分(PdO_x 和 VO_x)在 NO_x的催化脱除中发挥着不可或缺的作用,而氧化还原循环($2V^{4+}(Ti^{3+}) + Pd^{2+} \rightarrow 2V^{5+}(Ti^{4+}) + Pd^{0}$)归功于其优越的 NO_x催化性能,催化剂表面同时存在 E-R 机 理与 L-H 机理.

关键词: SCR;多活性位点;催化剂;吸附;机理

中图分类号: 0643.32 文献标志码: A DOI: 10.16084/j.issn1001-3555.2022.01.001

近年来,NH₃法选择性催化还原(NH₃-SCR)已 被证明是控制燃煤 NO_x 排放最有效的技术之一^[1], 蜂窝状 V₂O₅-WO₃/TiO₂ 是目前 NH₃-SCR 脱硝反应系 统使用最广泛的商用催化剂^[2-3],具有良好的催化 效率,但其反应活性温度窗口(300~400 °C)较高. 在低温条件下催化效率下降明显,而某些行业如: 焦化行业烟气温度一般低于 300 °C,若采用中高温 脱硝,需将烟气加热至 350 °C,会耗费大量能源, 因此,开展中低温脱硝催化剂的研究已成为烟气脱 硝领域的研究热点^[4-5].

目前,以 TiO₂ 为载体的钒氧化物催化剂是目前 应用较广的 SCR 脱硝催化剂,Ce、Fe、Mn等元素 改性的 V₂O₅-TiO₂ 催化剂对 NO_x 具有一定的催化活 性^[6-7]. Zhao 等^[8]报道了 Mn-Ce-V-WO_x/TiO₂ 系列催 化剂,其脱硝活性明显高于 TiO₂ 分别负载的单组分 催化剂,尤其是活性组分/TiO₂=0.2 摩尔比的催化 剂在 150~400 °C表现出最优的催化性能.Xin等^[9] 设计并制备了由 Mn₂O₃和 Mn₂V₂O₇组成的复合催化 剂,相比于 Mn₂O₃,其低温 NO 转化率和 N₂选择性 均有显著提高.虽然 Mn₂V₂O₇具有较好的 N₂选择性, 但 NO 转化率却较低.V_{0.05}-MnO_x 催化剂在 120~240 °C温度区间取得了超过 90% 的 NO 转化率和 80% 的 N₂ 选择性.已有研究表明 PdO_x 复合材料是挥发 性有机物催化氧化、NH₃-SCR 脱硝反应中最活跃的 物种^[10-11].此外,以前的研究^[12-13]表明通过添加 PdO_x 物种,可以大大提高 V/TiO₂ 催化剂的催化活 性.因此,Pd 改性 V/TiO₂ 催化剂可能是一种潜在的 NH₃-SCR 脱硝催化材料,而其表面发生的脱硝反应 机理亟待深入研究.

基于已有的研究基础,我们提出在 TiO₂载体 上负载 V₂O₅和 PdO_x,制备得到多活性位点 PdV/ TiO₂催化剂,开展催化剂脱硝活性性能测试,并结 合 XRD、BET、SEM、NH₃/O₂-TPD、H₂-TPR、XPS、In situ DRIFT 等表征方法以及 DFT 计算分析催化剂表 面 NH₃-SCR 脱硝机理.

1 实验部分

1.1 材料与试剂

烟气分析仪(Testo350-XL)购自德图仪器国际贸易有限公司.实验所用溶液纯度均为分析纯(AR),其中,硝酸钯、偏钒酸铵、锐钛矿型二氧化钛(>99.9%)均购自阿拉丁试剂有限公司;催化剂活性测试所用 N₂、NH₃、NO、O₂均由南京上元气体有限公司提供.

收稿日期:2021-12-27;修回日期:2022-01-15.

基金项目: 国家重点研发计划(2018YFC1902602)(National key R&D plan of China (2018YFC1902602)).

作者简介:丁鑫(1981),男,工程师,从事火电厂生产管理等,Tel:13912998728,E-mail: 12014719@chnenergy.com.cn(Ding Xin(1981-), male, engineer, Engaged in thermal power plant production management, etc., Tel: 13912998728,E-mail: 12014719@chnenergy.com.cn).

^{*} 通讯联系人, E-mail: amflora@seu.edu.cn;Tel:025-83790663.

1.2 实验

1.2.1 催化剂制备 催化剂采用等体积浸渍法制 备,其制备方法如下:将2gTiO₂粉末加入30mL去 离子水中,分别根据Pd和V与TiO₂的质量比(%),xg Pd(NO₃)₂·nH₂O和ygNH₄VO₃粉末进行测定,然后加 入去离子水中,制备混合溶液.将混合溶液在25℃ 下搅拌直至水蒸发至干,然后在105℃下干燥8h, 然后在500℃下焙烧5h,以获得不同质量分数的催 化剂,记为Pd_xV_y/TiO₂催化剂.其中x和y表示Pd和 V元素的质量分数.

1.2.2 催化剂表征 采用扫描电子显微镜(SEM, Ultra Plus, Zeiss, 德国)分析催化剂样品的形态和表 面结构.采用Bruke D8 Advance X射线衍射仪(德国) 进行催化剂的物相组成和晶体结构分析.测试中 用Cu-Kα辐射源,设定电压为30kV,扫描速度为5 (°)/min,扫描范围为10°~80°,步长为0.02°.采 用V-Sorb2800P型比表面积及孔径分析仪,在液氮 温度(-196 ℃)下进行N,吸附-解吸实验.比表面积 是通过应用Brunauer-Emmett-Teller(BET)方程从N₂ 吸附等温线计算得出的. O₂-温度程序解吸(TPD)和 H₂-温度程序还原(TPR)分析均在与FINESORB-3010 仪器连接的石英U型石英管反应器中进行.对于 TPD测量,催化剂样品用量为70 mg, O₂-He作为吸 附剂. 使用10 mL·min⁻¹ NH₃和30 mL·min⁻¹ N₂的混 合物进行吸附.吸附饱和后,以30 mL·min⁻¹的速度 吹扫He,直到TCD检测器信号变得稳定为止,然后, 在He气氛中(以30 mL·min⁻¹的流速)从100升高到

$$NO_{xConversion} = \frac{C(NO_{x})_{in} - C(NO_{x})_{out}}{C(NO_{x})_{in}} \times 100\%$$

$$N_{2Selectivity} = 1 - \frac{2C(N_{2}O)_{out}}{C(NO_{x})_{in} + C(NH_{3})_{in} - C(NO_{x})_{out} - C(NH_{3})_{out}} \times 100\%$$

率和 N_2 选择性. $C(NH_3)_{in}$ 和 $C(NO_x)_{in}$ 分别代表 NH_3 和 NO_x 进口气体浓度, 而 $C(NO_x)_{out}$ 、 $C(NH_3)_{out}$ 、 $C(N_2O)_{out}$ 和 $C(CO_2)_{out}$ 分别代表 NO_x 、 NH_3 和 N_2 O出口气体浓度.

2 结果与讨论

2.1 催化剂活性评价

图 1 显示了不同浓度 Pd 元素改性 Pd_xV_y/TiO₂ 系 列催化剂表面 NO_x转化率和 N₂选择性与反应温度 的关系.总体而言,在测试温度范围(100~400 °C) 内, Pd_xV_y/TiO₂催化剂对 NO_x的催化活性与 N₂选择 性均随温度升高而增强,其中, Pd_{0.12}V₄/TiO₂催化剂 表现出最优的 NO_x催化脱除性能,在 250 °C时可达 600 ℃进行解吸,并且记录工作曲线.在进行TPR 测量之前,将样品(20 mg)在高纯度Ar(20 mL·min⁻¹) 中于200 ℃预处理30 min,并保持35 min,然后冷却 至室温.随后以20 mL·min⁻¹的流速引入H₂,然后以 10 ℃/min的速度由室温升高至800 ℃以进行程序 升温还原,使用TCD检测器采集信号.X射线光电 子能谱(XPS)是通过Thermo Scientific K-Alpha⁺使用 AlK α 作为辐射源进行的.Ti 2*p*, V 2*p*, O 1*s* 和Pd 3*d* 的结合能由表面污染C 1*s*在284.8 eV处的峰值能量 校正.O₂/NH₃/NO/NO₂吸附的In situ DRIFT光谱是在 Nicolet6700光谱仪(Thermo Electron Corporation,美 国)上进行的,波数范围为1200~2000 cm⁻¹,分辨率 为4 cm⁻¹(每个光谱进行32次扫描).

1.2.3 催化剂活性测试 在固定床石英反应器中 开展催化剂NH₃-SCR反应活性测试.该反应器由 内径为8 mm的石英管制成,催化剂用量约100 mg (0.450~0.280 mm).人口烟气中由0.06% NH₃、0.06% NO和10% O₂组成, N₂作为平衡气.反应空速(GHSV) 为12 000 mL·g⁻¹·h⁻¹.催化氧化实验测试温度范围为 100~400 ℃,且每个温度测试前稳定30 min.实验采 用烟气分析仪检测进出口处气体浓度(NO、NO₂和 O₂).人口烟气在进入反应器之前,在气体室内混合 预热.

根据以下公式计算 Pd_xV_y/TiO_2 催化剂的 NO_x 转 化率和 N_2 选择性:

式中, NO_{xConversion}和 N_{2Selectivity}分别代表 NO_x转化

(1)

(2)

到接近 100% 的 NO_x 转化率和 N₂ 选择性,这可能 是由于过多 Pd 元素的添加可能导致活性组分在催 化剂表面发生团聚,进而使得其催化活性有所降低.

2.2 SEM分析

 $Pd_{0.12}V_4/TiO_2$ 催化剂的 SEM 及其对应 EDX 能 谱如图 2 (a-f)所示,可以发现, $Pd_{0.12}V_4/TiO_2$ 催化 剂结构呈层状分布, 疏松多孔, 这有利于气相催化 反应的进行.此外, EDX 能谱检测到催化剂中 O, Ti, V和 Pd 4 种元素, 并且活性组分(PdO_x和 VO_x) 非常均匀地分散在锐钛矿型 TiO₂ 表面上.活性组分 PdO_x和 VO_x 主要以无定型的形态存在于载体材料 表面, 这与文献报道结论一致^[14].

Fig.1 NO_x conversion and N₂ selectivity of Pd_xV_y/TiO_2 catalysts

图 2 Pd_{0.12}V₄/TiO₂催化剂 SEM-EDX 图 Fig.2 SEM images of Pd_{0.12}V₄/TiO₂ catalysts

2.3 XRD分析

 V_4/TiO_2 和不同浓度 Pd 元素改性 Pd_xV₄/TiO₂ 系 列催化剂的 XRD 结果如图 3 示.这 3 款催化剂中 均仅发现对应于锐钛矿型 TiO₂ (PDF # 21-1272) 不同晶面的衍射峰,且在各晶面中,(101)面是出 现频率最高面.此外,由于锐钛矿型 TiO₂ 催化剂载 体上的 Pd 和 V 含量较低且分散度较高,因此,未 检测到所有催化剂的 PdO_x 和 VO_x 物种所对应的衍 射峰.此外,催化反应前后催化剂晶体结构未发生 明显变化.

2.4 XPS 分析

实验同时利用 XPS 表征方法对催化剂的表面 物种和化学状态进行分析,测试分析结果如图 4 和 表 1 所示.图 4 (a)显示了 V₄/TiO₂ 和 Pd_{0.12}V₄/TiO₂

图 3 不同催化剂 XRD 图 Fig.3 XRD patterns of different catalysts

两款催化剂的Ti 2p XPS光谱.在两种催化剂Ti 2p1/2

和2p32的光谱中观察到双特征峰,结合能(BE)= 458.59和464.33 eV,均对应于Ti^{4+[15]},未观测到对应 于Ti³⁺的特征峰. Pd_{0.12}V₄/TiO₂和Used Pd_{0.12}V₄/TiO₂催 化剂的Ti 2p XPS光谱衍射强度略低于V_/TiO,催化 剂.相比于新鲜Pd0.12V4/TiO2催化剂,稳定性测试后 催化剂表面Ti⁴⁺峰强度降低,这表明部分Ti⁴⁺参与了 催化氧化过程,并被还原为Ti²⁺或Ti³⁺.O 1s XPS光谱 及其分峰拟合处理结果如图4(b)所示,其中,BE = 530.51和531.22 eV处的氧物种分别对应于晶格氧 (O_{latt})和表面吸附氧(O_{ads}),如: O²⁻, O₂²⁻, O⁻或OH⁻)物 种^[16]. 研究表明,由于其具有较高的迁移率, O_{ads}在 氧化反应中具有很高的活性[17].此外,如表1所示, Pd_{0.12}V₄/TiO₂催化剂表面O_{ads}/O_{latt}比例(53.70%)明显 高于V4/TiO2催化剂(46.76%), 而其表面Oads/Olatt在活 性测试后亦略有降低.如图4(c)所示, V 2p XPS光 谱分为BE = 515.79和516.94 eV的两个特征峰,分

图4 V₄/TiO₂和Pd_{0.12}V₄/TiO₂催化剂XPS图谱 Fig.4 XPS patterns of V₄/TiO₂ and Pd_{0.12}V₄/TiO₂ catalysts

表1 V4/TiO2, Pd0.12V4/TiO2和 Used Pd0.12V4/TiO2催化剂的 XPS和BET测试结果

Table 1 XPS peak fitting and BET of V_4/TiO_2 , $Pd_{0.12}V_4/TiO_2$ and used $Pd_{0.12}V_4/TiO_2$ catalysts

Catalysts	V ₄ /TiO ₂	$Pd_{0.12}V_4/TiO_2$
O_{ads}/O_{Latt}	0.47	0.53
V^{5+}/V^{4+}	2.70	2.56
$\mathrm{Pd}^{2+}/\mathrm{Pd}^{0}$	-	0.58
BET surface $/(m^2 \cdot g^{-1})$	67.65	53.64

別归因于 V^{4+} 和 $V^{5+[18]}$. 分析结果表明两款催化剂表面 $V^{5+/V^{4+}}$ 比例变化不大,均约为2.60. 如图 4(d) 所示, Pd $3d_{5/2}$ XPS 光谱也同样可以分为 BE = 334.8 和 336.5 eV 两个特征峰,分别对应于 Pd⁰和 Pd^{2+[19]}.可以发现少量的 Pd添加后催化剂活性大大提高,这可能归因于引入0.12% Pd 后吸附位点的增加.

2.5 H₂-TPR分析

通 过 H₂-TPR 表 征 方 法 研 究 了 V₄/TiO₂ 和 Pd_{0.12}V₄/TiO₂ 催化剂的还原性能,结果如图 5 所示. 在 V₄/TiO₂ 催化剂表面上发现了两个 H₂ 还原峰,分

別在398 ℃ (peak I)和459.4 ℃ (peak II)附近,分 別对应于V⁵⁺还原为V⁴⁺和Ti⁴⁺还原为Ti^{3+[20]}.相比 于V₄/TiO₂催化剂,在Pd_{0.12}V₄/TiO₂催化剂表面获 得了两个更低温度的还原峰(peak III和IV),其中 peak III可归因于Pd²⁺还原为Pd^{0[21]},而peak IV归 因于PdO_x的还原,该PdO_x位于另一种活性成分与 载体之间的界面上(其与VO_x和锐钛矿型TiO₂产 生强烈的相互作用)^[22].因此,还原峰的移动表明 分散良好的两种活性成分(PdO_x和VO_x)和锐钛矿 型TiO₂之间的相互作用更强.显然,Pd的添加有利 于氧化还原反应的进行,即2V⁴⁺(Ti³⁺)+Pd²⁺→2V⁵⁺ (Ti⁴⁺)+Pd⁰,这与XPS测试分析结果一致.

2.6 O₂-TPD分析

实验对 V₄/TiO₂ 和 Pd_{0.12}V₄/TiO₂ 两款催化剂进行 O₂-TPD 表征分析,测试结果如图 6 所示.一般来说,物理吸附氧(O_{2(ad)})和化学吸附氧(O²⁻/O⁻(ad))

图 6 V_4/TiO_2 和 $Pd_{0.12}V_4/TiO_2$ 催化剂 O_2 -TPD 图 Fig.6 O_2 -TPD profiles of V_4/TiO_2 and $Pd_{0.12}V_4/TiO_2$ catalysts

物种比晶格氧(O²⁻)物种更易于从催化剂表面解 吸^[23-24]. 由图6可知,约在270和340 ℃处可以观 察到两个氧物种解吸峰.其中,在100~300 ℃范围 内获得的解吸峰归属于化学吸附氧物种,例如O²⁻ 和O⁻,而另一个在300 ℃以上的峰归因于PdO_x和 VO_x活性组分团簇中晶格氧物种的解吸^[25-26].可以 看出,添加0.12%Pd会大大增加催化剂氧的种类, 特别是化学吸附氧的解吸量.值得一提的是,测得 的催化剂O₂解吸峰与其活性温度区间范围一致,这 表明Pd_{0.12}V₄/TiO₂催化剂对NO_x表现出的优异催化 脱除活性可以归因于其丰富的表面氧种类和氧迁移 率的提高.

NH₃ 作为脱硝反应的还原剂,其在催化剂表面的吸附量及吸附形态至关重要.通过 NH₃-TPD 实验对 V₄/TiO₂ 和 Pd_{0.12}V₄/TiO₂ 催化剂表面的酸量进行表征,结果如图 7 所示.可以发现, V₄/TiO₂ 和

图7 V₄/TiO₂和Pd_{0.12}V₄/TiO₂催化剂NH₃-TPD图

 $Pd_{0.12}V_4/TiO_2$ 催化剂的NH₃解吸峰均在100~450 ℃ 范围内. 与 V_4/TiO_2 催化剂相比,Pd的加入使 $Pd_{0.12}V_4/TiO_2$ 催化剂表面酸量明显增加.此外, $Pd_{0.12}V_4/TiO_2$ 催化剂的NH₃脱附面积最大.最重要 的是,NH₃-TPD的结果与催化剂活性和温度范围 一致.

2.7 DFT计算分析

2.7.1 PdV/TiO₂催化剂模型结构 锐钛矿型TiO₂ 各晶面的稳定性顺序如下:(101)>(100)>(001).此 外,从XRD测试结果可以发现(101)面同样也是出 现频率最高的晶面.两种活性成分(PdO_x和VO_x)负 载于锐钛矿型TiO₂(101)表面^[27],优化后所得催化 剂结构如图8所示.在该催化剂结构表面上主要为 Pd和V两个吸附位点.

2.7.2 各反应气体分子在 PdV/TiO₂催化剂表面单吸 附 如图9 所示, PdV/TiO₂催化剂表面的 Pd 和 V

图 8 优化后 PdV/TiO₂(101) 催化剂结构的俯视图(a) 和侧视图(b-c) Fig.8 Top view (a) and side view (b and c) of optimized PdV/TiO₂(101) catalyst structure

位点是NH₃-SCR各反应气体分子吸附的主要位点. 利用DFT计算评价了O₂分子在PdV/TiO₂催化剂表 面的吸附情况.如图9(a-b)所示,O₂分子既可以被 吸附在Pd位点上也可以被吸附在V位点上,且由吸 附后的PDOS结果可以发现O 2*p*轨道和V 3*d*轨道(Pd 的4*d*轨道)之间存在明显的杂化,这表明两者之间 存在化学相互作用,生成的O-V(或O-Pd)键长为 0.1867(或0.1.91) nm,表现出的吸附能为-5.848(或 -7.286)eV.NH₃分子作为SCR反应中重要的气体分 子,同样通过DFT计算研究了NH₃分子在催化剂表 面的潜在吸附酸位点. 众所周知, NH₃分子是呈现三 角形金字塔结构, NH₃分子中N原子的s轨道和p轨 道不等sp³杂化形成4个轨道, 键角为107.8°. 优化 后的NH₃分子吸附构型如图9(f-g)所示, NH₃分子 通过N端被吸附在催化剂表面Lewis酸(Pd和V)位上, 所生成的O-V(或O-Pd)键长为0.2090(或0.2109) nm, 相应的吸附能为-6.070(或-6.785)eV. PdV/TiO₂ 催化剂表面对NO_x(NO和NO₂)气体分子的吸附捕集 在NH₃-SCR反应中同样重要, 优化后的NO_x吸附构 型如图9(c-e和h-j)所示. NO分子可以分别通过O

图 9 O₂、NH₃、NO和NO₂气体分子在PdV/TiO₂催化剂表面的吸附结构和PDOS Fig.9 Configurations and PDOS for O₂, NH₃, NO and NO₂ gas molecules adsorption (a-n) on the PdV/TiO₂(101) catalyst surface

端和N端被吸附在PdV/TiO₂催化剂表面Pd位点上, 而其仅能够通过N端被吸附在表面V位点上.此外, NO在Pd位点上吸附(-8.447和-6.828 eV)的吸附能 高于其在V位点上(-5.375 eV)的吸附能,生成的对 应化学键的键长分别为1.794(N-Pd)、1.919(O-Pd)和 0.1846(N-V) nm.对于NO₂分子在V位点上的吸附, 其亦可分别通过N端和O端与PdV/TiO₂催化剂表面 的V位点结合,且新形成的N-V和O-V键的长度 分别为0.2012和0.2075 nm,其吸附能为-6.262 eV, 优化后的构型被认为是螯合硝基化合物^[25].NO₂分 子可以通过N端和O端分别吸附在Pd位点上,且 NO₂分子在PdV/TiO₂催化剂表面与Pd位点结合分 别为单齿配位亚硝酸盐(图9j)和线性亚硝酸盐(图 9i)^[26].这两种吸附构型对应的吸附能分别为-7.593 和-7.068 eV. O₂、NH₃、NO和NO₂气体分子在PdV/ TiO₂催化剂表面的吸附均为化学吸附,且有新化学 键形成.各反应气体分子在催化剂表面的吸附构型 中(非发生吸附的构型除外),气体分子的最高占据 分子轨道(HOMO)会与催化剂表面Pd和V位点的最 低未占据分子轨道(LUMO)发生杂化.因此,可以得 出的结论是NH₃-SCR反应中各气体分子均可以被 PdV/TiO,催化剂表面吸附并活化.

表2 NH ₃ -SCR各反应气体分子在PdV/TiO ₂ 催化剂表面的成键信息与	5吸附能
---	------

Table 2	Adsorption energy	and bonding informat	ion of NH ₃ -SCR rea	action gas molecules	s on PdV/TiO ₂ catalyst surface

Parameters	0	2		NO		Nł	ł ₃		NO ₂	
Adsorption end	V (0-V)	Pd (O-Pd)	Pd (N-Pd)	V (N-V)	Pd (O-Pd)	V (N-V)	Pd (N-Pd)	V (N-V)	Pd (N-Pd)	Pd (O-Pd)
Bond length /nm	0.1867	0.1891	0.1794	0.1846	0.1919	0.2090	0.2109	0.2012	0.1929	0.2017
Adsorption energy /eV	-5.848	-7.286	-8.447	-5.375	-6.828	-6.070	-6.785	-6.262	-7.593	-7.068

2.6.3 NO与NH₃气体分子在PdV/TiO₂催化剂表面 共吸附 类似地, PdV/TiO₂催化剂表面NO与O₂、 NH₃气体分子的单独共吸附结果如图10和表3所 示.NO和O₂的共吸附构型如图10(a)所示, 吸附能 为-7.838 eV, 这可能有利于NO₂(2NO + O₂ = 2NO₂) 的生成,促进了快速SCR的进行.NO和NH₃的共吸 附构型如图10(b)所示,吸附能为-9.109 eV,这表明 PdV/TiO₂催化剂表面NH₃-SCR过程遵循的L-H机理 可顺利发生.

图 10 PdV/TiO2催化剂表面 NO分别与O2、NH3气体分子的共吸附构型和 PDOS(a-b)

Fig.10 o-adsorption configurations and PDOS of NO with O2 and NH3 gas molecules on PdV/TiO2 catalyst surface (a-b), respectively

表3 PdV/TiO2催化剂表面NO分别与O2、NH3气体分子的共吸附能与成键信息

Table 3 Adsorption energy of NO with O2 and NH3 gas molecules on PdV/TiO2 catalyst surface

Parameters	02	NH ₃
Adsorption end	O(O-V)	N(N-V)
Co-Adsorption energy /eV	-7.838	-9.109
Bond length /nm	0.1979	0.2075
N-Pd Bond length /nm	0.1818	0.1785

9

2.8 In situ IR分析

原位红外漫反射实验测得的中间物种表明, Pd_{0.12}V₄/TiO₂催化剂表面发生的 NH₃-SCR 反应,在 原位红外测试中检测到的催化剂表面物种 NH_3 分 子将被吸附在 Brønsted 酸位点(-V-OH 或 -Ti-OH) 和 Lewis 酸位点(Pd 和 V)上,分别生成 NH^{4+} 和 NH_3

Table 4 In stu Druf I spectra peaks and men corresponding species				
Wavenumbers $/cm^{-1}$	Species	References		
1747.1, 1716.3	NH3 adsorption	[27]		
1697.0	NH^{4+}	[28]		
1355.7	$\rm NH_4 NO_3$	[29]		
1455.9	-N-N-O species	[30]		
1554.3,1540.8, 1523.4, 1338.3	-NH ₂	[31-32]		

表4 In situ DRIFT 漫反射峰及其对应的物种 Table 4 In situ DRIFT angeter produce and their common and in a species

 1697.0
 NH

 1355.7
 NH₄NO₃

 1455.9
 -N-N-O species

 1554.3,1540.8, 1523.4, 1338.3
 -NH₂

 物种,即① NH₃(g) + Brønsted \rightarrow -O-NH⁴⁺. ② NH_{3free}+
 -NH₂

 物种,即① NH₃(g) + Brønsted \rightarrow -O-NH⁴⁺. ② NH_{3free}+
 -NH₂

 物 \rightarrow M-NH_{3ad} - NH₂(NH₃ 物种氧化产生的反应中间
 備

 体)的存在证明了在氧物种(包括 O_{latt} 和 O_{ads})的氧化
 作用下,被吸附的 NH₃ 物种中的 N—H键被破坏,解

 高的自由 H原子被催化剂表面重新捕获并转化为
 副备了

 Brønsted 酸位. ③ NH_{3ad} + O \rightarrow -NH_{2ad} + Brønsted. ④
 -NH₂

 -NH_{2ad} + NO+O \rightarrow -N = O+H₂O. NH_{2ad}, NH_{3ad} 物种发
 生 H解离后的物种与气相或吸附态的 NO_x 物种结合,

 生成 -N-N=O 物种.最后,生成的 -N-N=O 物种进一
 西 NO_x 催化)

 步转化为无害的 N,和 H₂O, 即, ⑤ -N-N=O + Brønsted
 和 NO_x 等反力

→ N_2 + $H_2O^{[33]}$. 如图 11 所示, 检测到的瞬时中间物 种表明 $Pd_{0.12}V_4$ /TiO₂催化剂表面发生的 NH₃-SCR反 应过程中O₂、NH₃、NO和 NO₂分子处于竞争吸附 状态.

图 11 250 ℃下 Pd_{0.12}V₄/TiO₂催化剂在 SCR 气氛吸附 30 min 的 In situ DRIFT 反应图谱

 $\label{eq:Fig.11} \begin{array}{ll} {\rm In\ situ\ DRIFT\ spectra\ of\ SCR\ on\ Pd_{0.12}V_4/TiO_2\ at} \\ {\rm temperature\ of\ 250} \quad \ \ ^{\circ}\!\!\! C\ for\ 30\ min\ (balanced\ by\ N_2),\ respectively \end{array}$

制备了一系列多活性位点催化剂(Pd_xV_y/TiO_2), 并对其 NH₃-SCR 脱硝性能进行了测试分析,该系 列催化剂表现出优异的 NO_x 催化脱除性能,尤其 是 $Pd_{0.12}V_4/TiO_2$ 催化剂,其在 250 ℃时可达到接近 100% 的 NO_x 转化率和 N₂ 选择性.结合一系列的表 征和 DFT 计算分析,考察了 $Pd_{0.12}V_4/TiO_2$ 催化剂表 面 NO_x 催化脱除机理分析.催化剂表面对 NH₃、O₂ 和 NO_x 等反应气体分子表现出强烈的单吸附和共吸 附性能,且均为化学吸附.催化剂中各组分(PdO_x 和 VO_x)在 NO_x 的催化脱除中均发挥着不可或缺的作 用,其优越的 NO_x 催化性能归功于催化剂表面存在 的氧化还原循环($2V^{4+}(Ti^{3+}) + Pd^{2+} \rightarrow 2V^{5+}(Ti^{4+}) +$ Pd^0),催化剂表面同时存在 E-R 机理与 L-H 机理.

参考文献:

- [1] Li Ke-zhi(李柯志), Luo He(罗河), Zhao Ran(赵冉), et al. Regeneration treatment technology of deactivated vanadium tungsten and titanium denitration catalysts(具 焙烧服役史钛白粉对新制脱硝催化剂活性影响机制 研究)[J]. J Mol Catal (China) (分子催化), 2020, 34 (5): 415-424.
- [2] Zhou Jin-hui (周锦晖), Li Guo-bo (李国波), Wu Peng (吴鹏), *et al.* The As poisoning mechanism over commercial V₂O₅-WO₃/TiO₂ catalyst(商业V₂O₅-WO₃/TiO₂脱硝 催化剂砷中毒机理) [J]. *J Mol Catal*(*China*) (分子催 化), 2018, **32**(5): 55–64.
- [3] Xie Wang-wang (谢旺旺), Zhou Guang-he (周广贺), Zhang Xiao-hong (张晓虹), *et al.* Research progress of

attapulgite application in flue gas SCR denitration catalytic reaction(凹凸棒石在烟气SCR脱硝催化反应 中的应用研究进展) [J]. *J Mol Catal* (*China*) (分子催 化), 2020, **34**(6): 546–558.

- [4] Kong Ling-peng (孔令朋), Miao Jie (苗杰), Li Minghang (李明航), et al. Performances of selective catalytic reduction of NO with CO over CuMnCeLa-O/γ - Al₂O₃ catalyst (CuMnCeLa-O/γ-Al₂O₃催化剂助燃脱硝性能 研究) [J]. J Mol Catal (China) (分子催化), 2018, 32 (4): 295-304.
- [5] Zi Zhao-hui (訾朝辉), Zhu Bao-zhong (朱宝忠), Sun Yun-lan (孙运兰), et al. Low-Temperature selective catalytic reduction of NO_x with ammonia over MnO_x/Al₂O₃ catalysts(MnO_x/Al₂O₃催化剂低温SCR脱硝性能)[J]. J Mol Catal (China)(分子催化), 2018, **32**(3): 249–260.
- [6] Smirniotis P G, Pe a D A, Uphade B S. Low-temperature selective catalytic reduction (SCR) of NO with NH₃ by using Mn, Cr, and Cu oxides supported on hombikat TiO₂
 [J]. Angew Chem Int Ed, 2001, 40: 2479–2482.
- Boningari T, Pappas D K, Smirniotis P G. Metal oxideconfined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NO_x in the presence of excess oxygen[J]. J Catal, 2018, 365: 320–333.
- [8] Zhao X, Mao L, Dong G. Mn-Ce-V-WO_x/TiO₂ SCR catalysts: Catalytic activity, stability and interaction among catalytic oxides [J]. *Catalysts*, 2018, 8(2): 76–84.
- [9] Xin Y, Li H, Zhang N, et al. Molecular-level insight into selective catalytic reduction of NO_x with NH₃ to N₂ over a highly efficient bifunctional V-MnO_x catalyst at low temperature[J]. ACS Catal, 2018, 8(4): 937–949.
- [10] Lott P, Dolcet P, Casapu M, et al. The effect of prereduction on the performance of Pd/Al₂O₃ and Pd/CeO₂ catalysts during methane oxidation[J]. Ind Eng Chem Res, 2019, 58(28): 12561-12570.
- Sheng L P, Ma Z X, Chen S Y, et al. Mechanistic insight into N₂O formation during NO reduction by NH₃ over Pd/ CeO₂ catalyst in the absence of O₂ [J]. Chin J Catal, 2019, 40(7): 1070–1077.
- [12] Liu Y, You X C, Sheng Z Y, *et al.* The promoting effect of noble metal (Rh, Ru, Pt, Pd) doping on the performances of MnO_xCeO₂/graphene catalysts for the selective catalytic reduction of NO with NH₃ at low temperatures[J]. *New J Chem*, 2018, **42**(14): 11673–11681.
- [13] Hosokawa S, Tada R, Shibano T, et al. Promoter effect of Pd species on Mn oxide catalysts supported on rare earth iron mixed oxide[J]. Catal Sci Technol, 2016, 6(21):

7868-7874.

- Liu Y, Li Y, Wang Y T, et al. Sonochemical synthesis and photocatalytic activity of meso- and macro-porous TiO₂ for oxidation of toluene[J]. J Hazard Mater, 2019, 150 (1): 153–175.
- [15] Wang Y F, Zhang C B, Yu Y B, et al. Ordered mesoporous and bulk Co₃O₄ supported Pd catalysts for catalytic oxidation of o-xylene[J]. Catal Today, 2015, 242: 294–299.
- [16] Jin Qi-jie (金奇杰), Sui Guo-rong (眭国荣), Liu Qing (刘青), et al. Compatibility optimization of Mn-Mo-W-O_x catalyst for selective catalytic reduction of NO by NH₃ (Mn-Mo-W-O_x脱硝催化剂活性组分的配伍优化) [J]. J Mol Catal (China)(分子催化), 2017, **31**(2): 159–168.
- [17] Tang Nan (唐南), Huang Yan (黄妍), Li Yuan-yuan (李元元), et al. Low temperature selective catalytic reduction of NO with NH₃ over Fe-Mn catalysts prepared by hydrothermal method(水热法制备铁锰催化剂脱硝性能及抗水抗硫性能研究) [J]. J Mol Catal(China) (分子催化), 2018, 32(3): 240–248.
- [18] Pei G X, Liu X Y, Yang X F, et al. Performance of Cu-Alloyed Pd Single-Atom catalyst for semihydrogenation of acetylene under simulated Front-End conditions[J]. ACS Catal, 2017, 7(2): 1491–1500.
- [19] Busto M, Ben í tez V M, Vera C R, et al. Pt-Pd/WO₃-ZrO₂ catalysts for isomerization-cracking of long paraffins
 [J]. Appl Catal A Gen, 2008, 347(2): 117–125.
- [20] Shen Y, Wang L F, Wu Y B, et al. Facile solvothermal synthesis of MnFe₂O₄ hollow nanospheres and their photocatalytic degradation of benzene investigated by in situ FTIR[J]. Catal Commun, 2015, 68: 11-14.
- [21] Chen L, Li J H, Ge M F. Promotional effect of Ce-doped V₂O₅WO₃/TiO₂ with low vanadium loadings for selective catalytic reduction of NO_x by NH₃ [J]. J Phys Chem C, 2009, 113(50): 21177–21184.
- [22] Bandara J, Mielczarski J A, Kiwi J. Adsorption mechanism of chlorophenols on iron oxides, titanium oxide and aluminum oxide as detected by infrared spectroscopy [J]. *Appl Catal B Environ*, 2001, **34**(4): 307–320.
- [23] Qiao Ming (乔明), Zhang Ji-yi (张继义), Zong Lu-yao (宗路遥), et al. Research progress in catalytic denitrification performance: The catalyst type, preparation methods and activity(催化脱硝技术研究进展—催化 剂的种类、制备方法及催化活性)[J]. J Mol Catal (China)(分子催化), 2020, 34(2): 165-181.
- [24] Fang Qi-long (方 祺 隆), Zhu Bao-zhong (朱 宝 忠), Sun Yun-lan (孙运兰), *et al.* Study on the performance of low

temperature De-NO_x based on Mn-Fe/Al₂O₃ catalysts (Mn-Fe/Al₂O₃ 催化剂的低温脱硝性能研究) [J]. *J Mol Catal*(*China*)(分子催化), 2018, **32**(4): 305–314.

- [25] Guo P, Guo X, Zheng C G. Roles of γ -Fe₂O₃ in fly ash for mercury removal: Results of density functional theory study[J]. Appl Surf Sci, 2010, 256(23): 6991–6996.
- [26] Abdulhamid H, Dawody J, Fridell E, et al. A combined transient in situ FTIR and flow reactor study of NO_x storage and reduction over M/BaCO₃/Al₂O₃ (Pd or Rh) catalysts[J]. J Catal, 2006, 244(2): 169–182.
- [27] Yun D, Wang Y, Herrera J E. Ethanol partial oxidation over VO_x/TiO₂ catalysts: The role of titania surface oxygen on the vanadia reoxidation in the Mars-van Krevelen mechanism[J]. ACS Catal, 2018, 8(5): 4681–4693.
- Zeng Y Q, Wang Y N, Zhang S L, et al. A study on the NH₃-SCR performance and reaction mechanism of a cost effective and environment friendly black TiO₂ catalyst[J]. *Phys Chem Chem Phys*, 2018, 20(35): 22744–22752.
- [29] Chen Z H, Yang Q, Hua L, et al. CrMnO_x mixed oxide catalysts for selective catalytic reduction of NO_x with NH₃ at low temperature [J]. J Catal, 2012, 276(1/3): 56– 65.

- [30] Ma Z R, Wu X D, Si Z C, et al. Impacts of niobia loading on active sites and surface acidity in NbO_x/CeO₂-ZrO₂ NH₃-SCR catalysts[J]. Appl Catal B Environ, 2015, 179: 380–394.
- [31] Amores J G, Escribano V S, Ramis G, et al. An FTIR study of ammonia adsorption and oxidation over anatase supported metal oxides[J]. Appl Catal B Environ, 1997, 13(1): 45–58.
- [32] Sun P F, Zhai S Y, Chen J K, et al. Development of a multi-active center catalyst in mediating the catalytic destruction of chloroaromatic pollutants: A combined experimental and theoretical study[J]. Appl Catal B Environ, 2020, 272: 119015-119024.
- [33] Liu J, Li X Y, Li R Y, *et al.* Facile synthesis of tube-shaped Mn-Ni-Ti solid solution and preferable Langmuir-Hinshelwood mechanism for selective catalytic reduction of NO_x b_y NH₃ [J]. *Appl Catal A Gen*, 2018, **549**: 289–301.

Study on Denitration Reaction Mechanism of Pd Modified Multiactive Site Catalyst NH₃-SCR

DING Xin¹, LI Guo-bo², HUANG Jun¹, ZHANG Chun-yang¹, ZHANG Ya-ping^{2*}, WANG Ling² (1. Guodian Jiangsu Jianbi Power Generation Co., Ltd., Zhenjiang 212006, China; 2. School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract: Low temperature SCR denitration technology has the advantages of high efficiency, low energy consumption, no secondary pollution and so on, which is a promising denitration purification technology. In this work, a multi-active center (Pd_xV_y/TiO_2) catalysts were prepared, and the catalytic removal of NO_x was investigated. The results show that the NO_x conversion and N₂ selectivity of $Pd_{0.12}V_4/TiO_2$ catalyst can reach nearly 100% at 250 °C. Combined with XRD, TEM, XPS, H₂-TPR, in situ DRIFT and DFT analysis, the catalytic removal on catalyst surface mechanism of NO_x was investigated. The obtained data revealed that the catalyst has strong adsorption capacity for NH₃, O₂ and NO_x, and all components (PdO_x and VO_x) play an indispensable role in the catalytic removal of NO_x, all components (PdO_x and VO_x) of the catalyst play an indispensable role in CB oxidation removal, and the redox cycle $(2V^{4+}(Ti^{3+}) + Pd^{2+} \rightarrow 2V^{5+}(Ti^{4+}) + Pd^{0})$ was attributed to its superior NO_x catalytic performance, and there were both E-R and L-H mechanisms on the catalyst surface.

Key words: selective catalytic reduction; multi-active site; catalyst; adsorption; mechanism