文章编号: 1001-3555(2024)03-0245-09

研究论文

粉煤灰基 Y 型分子筛的制备及其对 CO₂ 加氢性能的研究

李江圆,李 健,度昌民,伍香连,艾沙·努拉洪^{*} (新疆大学化工学院,新疆大学与科技部共建碳基能源化学与利用国家重点实验室, 新疆煤炭清洁转化与化工过程重点实验室,新疆乌鲁木齐 830017)

摘要: 以粉煤灰为原料制备 Y 型分子筛,并探究其 CO₂ 加氢活性.采用化学焙烧法活化粉煤灰,以 Na₂CO₃ 作为化 学活化剂,探究焙烧温度、焙烧时间、粉煤灰与碳酸钠的质量比对活化粉煤灰的影响,实验结果表明在焙烧温度 800 ℃、焙烧时间 2 h、粉煤灰与 Na₂CO₃ 质量比为 1.0:0.8 条件下,粉煤灰焙烧后产物以霞石为主.以洗涤后产物 为原料,采用水热合成法制备 Y 型分子筛,探究 HCl/SiO₂ 比、晶种加入量、H₂O/SiO₂ 比、水热温度、水热时间对分 子筛结晶度影响,在 HCl/SiO₂=2.7,晶种加入量为 6%,H₂O/SiO₂=80,水热温度 100 ℃、水热时间 12 h 所制备的 Y 型分子筛结晶度最高.将所制备的 Y 型分子筛进行 CO₂ 加氢实验,实验结果表明在反应温度 600 ℃,反应压力为 4.0 MPa 条件下, CO,转化率达到 60%, CH₄ 选择性达 44.9%.

关键词:粉煤灰;分子筛;CO2加氢;固废物利用

中图分类号: O643.32 文献标志码: A

DOI: 10.16084/j.issn1001-3555.2024.03.006

由于我国"多煤、贫油、少气"的能源现状,火力 发电便成为我国主要发电方式.随着科技的发展,多 种清洁能源发电技术开始出现,其中风力发电、核 电、太阳能发电逐渐成为我国的主要发电方式之一, 但清洁能源远远满足不了人们日常生活的需求与国 家发展的需求,未来几十年,火力发电仍旧是我国的 主要发电方式.煤炭剧烈燃烧产生的 CO₂、SO₂ 和 NO_x 过量排放,对人类健康和动植物造成严重危害, 也阻碍了生态环境的可持续发展^[1].因此,在全球生 态问题日益严峻的背景下,煤炭的高效清洁利用已 成为研究发展的必然趋势^[2].

粉煤灰是燃煤发电厂产生的固体废物,含有大量的硅和铝,可通过不同合成方法转化为沸石^[3].在循环经济和废物回收利用的背景下,将粉煤灰转化为具有均匀孔隙、结晶度和离子交换等良好物理性质的沸石材料具有一定的经济效益,而粉煤灰基沸石如 ZSM-5、A型、X型分子筛相比于商用沸石,虽然比表面积减少但它显现出对环境污染物相同的吸附潜力^[4-5],且粉煤灰为原料制备的分子筛相比于商用分子筛有具有成本低廉、产品附加值高的优点^[6-7].

通过粉煤灰与碳酸钠均匀混合后进行焙烧, 改变焙烧温度、焙烧时间、粉煤灰与碳酸钠的质 量比等因素,判断粉煤灰活化程度.并以活化后的 粉煤灰为原料,通过考察 HCl/SiO₂比、晶种含量、 H₂O/SiO₂比、水热温度、水热时间等因素,以Y型 分子筛的相对结晶度 (percent relative crystallinity, *RC*_{XRD}) 作为标准,在未除去粉煤灰中杂原子的情况 下,制备了结晶度较高的Y型分子筛.由于不同金 属或体系对 CO₂加氢性能不同^[8-10],通过 CO₂加氢 实验考察粉煤灰基分子筛的催化活性.

1 实验方法

1.1 试剂和仪器

粉煤灰 (取自新疆乌鲁木齐市热电厂); 九水合 硅酸钠 Na₂SiO₃·9H₂O、无水碳酸钠 Na₂CO₃(天津市 化学试剂四厂); 盐酸 HCl(天津市福晨化学试剂公 司); NaY 分子筛晶种 (西陇科学化工). 气-气多通道 固定床催化剂评价装置、马弗炉 (天津市鹏翔科技 有限公司); 气相色谱 (安捷伦 GC-8860, FID 为 19095P-S25, 50 m×0.53 mm, TCD 为 MOLsieve 5A,

收稿日期: 2024-03-29;修回日期: 2024-04-30.

基金项目:新疆维吾尔自治区自然科学基金面上项目 (No. 2022D01C378)(The Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2022D01C378)).

作者简介: 李江圆 (1997-), 男, 硕士研究生, 研究方向为工业催化 (Li Jiang-yuan (1997-), male, master degree candidate, mainly engaged in research of industrial catalysis).

^{*} 通信联系人, E-mail: aisa705@163.com, Tel: 0991-8582059, 8582801.

1.83 m×2 mm, He 载气); 水热反应釜 (仪贝尔).

1.2 实验步骤

粉煤灰经焙烧活化预处理后再进行分子筛的合 成,其中以粉煤灰中的铝为铝源,九水合硅酸钠为补 硅源,经磁力搅拌水热合成法制备.制备步骤为: ①将粉煤灰与碳酸钠经过研磨、混合后放入马弗炉 中加热,待焙烧完全并冷却后,记产物为FCFA,将 FCFA 研磨并过 0.280 mm 筛, 室温保存; ② 反应前 将焙烧后的粉煤灰用蒸馏水洗涤,待洗涤液呈中性 后,将滤渣放入烘箱中100 ℃过夜干燥;③称量一 定量的滤渣粉末至烧杯中,然后滴加不同摩尔比的 盐酸溶液,搅拌1h后,加入硅酸钠与少量晶种,磁 力搅拌4h.将搅拌后混合物转移至反应釜进行晶化. ④ 晶化完成后, 经抽滤、洗涤, 烘干和研磨后, 进行 XRD 表征并计算分子筛的结晶度 RC_{XRD},结晶度的 计算方法如式(1); ⑤ 对分子筛进行压片研磨, 取粒 径 0.450~0.280 mm 颗粒进行实验评价. 称取 2 g 颗 粒催化剂,然后将催化剂颗粒使用石英棉置入固定 床反应管恒温区; ⑥ 将 N₂以 200 mL·min⁻¹ 的速率 充入反应管并调节背压阀,待 N,压力升至所需反应 压力后,开启升温程序,反应管以5℃·min⁻¹升至反应 温度后,关闭 N₂,将 CO₂、H₂、Ar 的混合气体充入反应 管内进行反应,其中气体摩尔比为 CO2: H2: Ar= 9:27:1, CO₂流量为 10 mL·min⁻¹·g⁻¹. ⑦反应 1 h 后、利用气相色谱对反应产物进行分析,计算 CO2 的转化率 X(CO₂), CH₄ 选择性 S (CH₄) 以及 CH₄ 收 率 R (CH₄), 如式 (2)-(4).

 $RC_{\rm XRD} = \sum A_{\rm (ES,2\theta)} / \sum A_{\rm (SS,2\theta)}$ (1)

$$X(CO_2) = [n(CO_2, in) - n(CO_2, out)]/n(CO_2, in)$$
 (2)

$$S(CH_4) = n(CH_4, out) / [n(CO_2, in) - n(CO_2, out)] \quad (3)$$

$$R(CH_4) = S(CH_4) \times X(CO_2)$$
(4)

式中, $\sum A_{(ES, 2\theta)}$ 和 $\sum A_{(SS, 2\theta)}$ 分别为实验样品和标 准样品 XRD 谱 2 θ =6.1°、9.9°、11.7°、15.4°、20.0°、 23.3°、26.6°、30.9°处的峰面积之和; $n(CO_2, in)$ 为反 应器入口 CO₂ 摩尔量; $n(CO_2, out)$ 为反应器出口 CO₂ 摩尔量; $n(CH_4, out)$ 为反应器出口 CH₄ 摩尔量. **1.3 分析方法**

X 射线衍射 (XRD) 分析. XRD 采用 D8 Advanced X-射线衍射仪 (德国布鲁克), 其测试条件为 Cu 靶 Kα 射线 (λ=0.154 056 nm), 扫描电压 40 kV, 扫描电流 100 mA, 扫描步长 10 (°) ·min⁻¹. N₂ 吸脱附 (BET) 使用 麦克 ASAP2460 仪器. 使用 BET(BrunauerEmmettTeller) 得到其总比表面积. 扫描电镜 (SEM) 是观测 样品形貌的有效工具. 由于分子筛的通电性能较差, 所以要对其进行喷金处理提高其导电性, 随后使用 S-4800 型厂发射扫描电镜仪进行观测. X-射线能量 色散谱仪 (EDS) 检测其元素成分.

2 结果与讨论

2.1 粉煤灰的活化预处理

2.1.1 焙烧温度对产物的影响

在焙烧温度分别为 720、760、800 和 840 ℃, 粉 煤灰与碳酸钠的质量比为 1.0:1.0, 焙烧时间为 4 h, 其产物的 XRD 表征如下图 1 所示. 由图 1 可知, 粉 煤灰中除了有石英(PDF#85-0798)、莫来石(PDF#79-1275) 以外, 还含有少量的 Fe₅O₃, 对比 PDF#87-1166 卡片, 20=35.5°为 Fe₂O₃ 的主要衍射峰. 在 840 ℃ 下, Fe₂O₃ 与 Na₂CO₃ 之间不发生反应, 所以改变焙 烧温度对 Fe₂O₃ 在 20=35.5°的峰影响较小. 当焙烧 温度大于 720 ℃ 时, 石英峰 2*θ*=26.5°已经消失不见, 但 2θ = 34.5 (PDF#76-1733) 峰处出现了霞石,产物 中依旧出现少量莫来石的峰,当焙烧温度升高至 760 ℃时,与720 ℃产品相差较小,莫来石峰未有 明显变化,当升高温度至800℃时,莫来石峰完全 消失, 霞石的峰值明显增加. 这可能是当温度低于 800 ℃时, Na₂CO₃能够与石英反应生成霞石, 但因 为莫来石结构稳定,只有温度升至 800 ℃ 时,才出 现霞石. 当温度继续至 840 ℃ 时, 与 800 ℃ 时产品 相差较小,且过高的温度会大大增加能耗.综上所 述,800 ℃ 为最佳焙烧温度.

2.1.2 焙烧时间对产物的影响

在焙烧温度为800℃、粉煤灰与碳酸钠质量比

为 1.0:1.0 的条件下,控制焙烧时间为 1、2、4 和 6 h,其结果如图 2 所示.由图 2 可知,当焙烧时间为 1 h 时,莫来石的反应不完全,杂峰较多,说明反应时 间较短,虽然产物中石英已经消失,但还有少量的莫 来石.当焙烧时间为 2 h 时,莫来石晶相消失,产物 中主要是霞石与少量的 Fe₂O₃,焙烧时间延长至 4 与 6 h 时,未有明显变化,说明焙烧温度 800 ℃,焙 烧时间 2 h 足以活化粉煤灰中的莫来石与石英,时 间再长,不仅会增加工艺时间与工艺能耗,还会影响 工艺效率.综上所述,粉煤灰的最佳焙烧为 2 h.

Fig.2 Effects of controlling calcination time on products

2.1.3 粉煤灰与碳酸钠质量比对产物的影响

在焙烧温度 800 ℃, 焙烧时间为 2 h 时, 改变粉 煤灰与碳酸钠的质量比分别为 1.0 : 0.4、1.0 : 0.6、 1.0 : 0.8、1.0 : 1.0, 其结果如图 3 所示. 由图 3 可知, 当粉煤灰与碳酸钠质量比 (灰盐比)为 1.0 : 0.4 时, 石英晶相完全消失, 霞石晶相开始出现, 但仍存有大 量的莫来石, 当灰盐比为 1.0 : 0.6 时, 霞石峰锐化, 莫来石峰逐渐开始消失, 表明, 虽然 Na₂CO₃ 的加入

能与大部分的莫来石及石英发生反应; 当灰盐比为 1.0:0.8时, 莫来石消失, 主要以霞石为主, 当灰盐 比增加至 1.0:1.0时, 变化较小. 综上所述, 最佳灰 盐比为 1.0:0.8.

2.2 粉煤灰基 Y 型分子筛的制备

在焙烧温度 800 ℃、焙烧时间为 2 h、灰盐比 为 1.0:0.8 时,粉煤灰活化后的主要物质为霞石,霞 石结构较为稳定,难溶于水,且粉煤灰中所含杂质较 多,过多的杂原子会降低分子筛结晶度^[11],故以晶种 辅助法制备粉煤灰基 Y 型分子筛.

2.2.1 HCl/SiO2 对分子筛的影响

控制洗涤后 FCFA 与 Na₂SiO₃·9H₂O 的质量比 为 1.0:4.0, H₂O/SiO₂=200,结晶温度为 100 ℃,结 晶时间为 12 h,晶种添加量为所添加固体质量的 10%,考察 HCl/SiO₂ 对制备 Y 型分子筛的影响.结 果如图 4 所示.由图 4 可知,在 2 θ =6.1°、9.9°、11.7°、 15.4°、20.0°、23.3°、26.6°、30.9°是 Y 型沸石特征衍 射峰.当 0.9≤HCl/SiO₂≤3.3 时,均有 Y 型分子筛 的特征衍射峰,当 0.9≤HCl/SiO₂≤2.1 时,Y 型分子 筛衍射峰强度逐渐增加,而 2 θ = 34.5°峰逐渐减弱,

这表明随着盐酸加入量的增加,产物中霞石结构逐 渐减少,Y型分子筛的结晶度逐渐增高,表明HCl/ SiO₂较低时, 霞石的溶解速度较慢, 液相体系中的 活性硅铝元素浓度较低,导致分子筛的结晶度降低. 而当2.7<HCl/SiO₂ ≤3.3 时,Y型分子筛的衍射峰 强度减弱,这可能是由于液体体系逐渐向酸性转化, 铝元素不能以铝氧四面体的形式参与分子筛的结 晶,导致分子筛的相对结晶度降低.表1为不同 HCl/SiO₂比条件下制备的Y型分子筛相对结晶度, 由表可知,当HCl/SiO₂比为2.1 时,分子筛的相对

表 1 不同 HCI/SiO₂ 摩尔比、晶种添加量、H₂O/SiO₂ 比对 Y 型分子筛结晶度影响

Table 1 Effects of different HCl/SiO_2 molar ratios, addition content of crystal seed, and H_2O/SiO_2 ratios on the crystallinity

of Y-type molecular sieves						
Preparation co	$RC_{\rm XRD}$ /%					
HCl/SiO ₂	0.9	58				
	1.5	64				
	2.1	100				
	2.7	53				
	3.3	44				
Crystal seed /%	2	35				
	4	48				
	6	79				
	8	93				
	10	100				
H ₂ O/SiO ₂ ratio	60	77				
	80	100				
	120	87				
	160	69				
	200	60				

结晶度最高,其结果与 XRD 分析结果相同.综上所述,HCl/SiO₂=2.1 为制备分子筛的最佳 HCl/SiO₂比. 2.2.2 晶种添加量对 Y 型分子筛的影响

确定 HCl/SiO₂=2.1, 晶化温度为 100 ℃, 晶化时 间为 12 h, 晶种添加量分别为 2%、4%、6%、8%、 10%, 考察晶种添加量对 Y 型分子筛结晶度的影响. 由图 5 可知, 当晶种添加量为 2% 时, 衍射峰较低, 说明分子筛晶化不完全, 当晶种添加量从 2% 升至 6% 时, Y 型分子筛衍射峰逐渐升高, 但继续增加晶

Fig.5 Effects of different crystal species addition on the preparation of molecular sieves

种添加量时,Y型分子筛衍射峰无明显变化.根据其 相对结晶度,当晶种添加量为2%时,相对结晶度仅 为35%,但随着晶种添加量的增加,分子筛的相对 结晶度迅速上升,当晶种添加量为4%时,相对结晶 度为48%,晶种添加量为6%时,相对结晶度为 79%;而当晶种添加量上升至8%时,相对结晶度为 93%,相对结晶度与晶种添加量6%相比,相对结晶 度只增加14%,从制备分子筛的经济效益方面考虑, 我们取用晶种添加量为6%.

2.2.3 水硅比对制备分子筛的影响

图 6 为不同水硅比对 Y 型分子筛的影响,如图 所示,当水硅摩尔比分别为 60、80、120 时,其衍射 特征峰基本相近,当 H₂O/SiO₂=60 时,前驱体溶液内 的杂原子的浓度增大,导致 Y 型分子筛的相对结晶 度降低.当水硅比等于 80 时,Y 型分子筛的衍射特 征峰峰强度较高,峰型平整,且无其它杂峰且根据 表 1,水硅比为 80 时,Y 型分子筛相对结晶度最高. 综上所述,确定为最佳水硅比为 80.

图 6 不同水硅比对 Y 型分子筛的影响

Fig.6 Effects of different hydrosilicon ratios on the preparation of Y-type molecular sieves

2.2.4 水热温度

图 7 为不同晶化温度对 Y 型分子筛的影响, 如 图所示, Y 型分子筛的衍射峰强度先增强后减弱, 当 水热温度为 100 ℃ 时, 其峰强度最高. 而当水热温 度小于 100 ℃ 时, Y 型分子筛衍射峰较低, 因为当 温度较低时, 液相体系可能无法为分子筛的晶化提 供有效能量, 暂缓了分子筛晶种的生长, 而当水热温 度大于 100 ℃ 时, 出现 P 型沸石的衍射峰, 且 Y 型 沸石的结晶度开始降低, 说明分子筛出现了转晶现 象, 根据奥斯特瓦尔德法则, 沸石通常由框架结构较 弱的易变结构转化为更稳定的结构, 由于液相中

Na⁺的浓度过高且 Y 型分子筛孔道结构为 12 元环, 在热力学上强度较弱,容易向其它沸石转变.由表 2 可得,Y 型分子筛的相对结晶度在 100 ℃ 时结晶度 最高,综上所述,确定水热温度为 100 ℃.

由图 8(a) 可得, 粉煤灰主要是由球状颗粒组成, 颗粒形状虽然大小不一, 但形状趋近于圆球状, 且较 小的球状颗粒, 其表面仍附着某些无定型物质. 粉煤 灰中的圆球微珠是含有 SiO₂、Al₂O₃、Fe₂O₃和 CaO 等氧化物的熔融体相快速冷却生成^[12], 而在冷却过 程中, 表面张力使玻相箱快速冷却成球形, 可以简称 为玻璃微珠, 而在熔体快速冷却的过程中, 气体没有 及时排出, 导致玻璃微珠形状不一^[13]. 图 8(b) 为水 热温度为 100 ℃ 的 Y 型分子筛 SEM 图, 由图可知 Y 型分子筛的结构总体呈现不规则的片状结构.

表 2 水热温度与水热时间对 Y 型分子筛结晶度的影响

Table 2 Effects of hydrothermal temperature and hydrothermal

time on the crystallinity of Y-type molecular sieves						
Hydrothermal of	condition	$RC_{\rm XRD}$ /%				
Temperature/°C	80	53				
	90	84				
	100	100				
	110	75				
	120	56				
Time/h	4	58				
	8	61				
	12	100				
	16	81				
	20	72				

图 8 (a) 粉煤灰及 (b)Y 型分子筛 SEM 图 Fig.8 SEM images of (a) fly ash and (b) Y-type molecular sieve

图 9 为不同温度下制备分子筛的 SEM 图, 如 图所示, 当水热温度为 80 ℃ 时, 主要以聚集的无定 型颗粒为主, 当水热温度提升至 90 ℃ 时, 开始出现 不规则的片状结构, 其表面仍有一些无定型物质附 着, 并且结构开始堆聚, 当水热温度进一步提高时,

图 9 不同温度下分子筛的 SEM 图 (a) 80 ℃; (b) 90 ℃; (c) 100 ℃; (d) 110 ℃; (e) 120 ℃ Fig.9 SEM images of molecular sieves at different temperatures (a) 80 ℃; (b) 90 ℃; (c) 100 ℃; (d) 110 ℃; (e) 120 ℃

片状结构表面变光滑但堆积现象进一步加重,当水 热温度升至 120 ℃ 时,分子筛堆积变大. 2.2.5 水热时间

图 10 为不同水热时间对 Y 型分子筛的影响, 如图可知,随着水热时间的增长, Y 型分子筛衍射峰 逐渐加强,当水热时间为 12 h 时,衍射峰变宽,表明 所得到的分子筛的晶粒变小,当水热时间增加至 16 h 时, Y 型分子筛衍射峰逐渐变窄,且 P 型沸石衍射 峰开始出现,再次加长水热时间至 20 h 时,P 型沸 石衍射峰逐渐变高, Y 型分子筛衍射峰宽度变窄强 度下降,而当水热时间增至 24 h 时,P 型沸石衍射 峰进一步加强,水热时间为 20 h 时,其液相体系基 本平衡.由表 2 可知,当水热时间小于 8 h 时,液相 内晶种浓度较低,故分子筛结晶度较低,当水热时间 超过 12 h 时,Y 型沸石向 P 型沸石转化,分子筛的 相对结晶度进一步减少,由此可得,在水热温度为 100 ℃,水热时间超过 12 h 的情况下,Na⁺浓度过高 是沸石转晶的主要因素.

2.3 BET 分析

分子筛氮气吸脱附曲线与孔径分布如下图 11 所示. 由图 11(a) 可知, Y 型分子筛的吸脱附曲线类 型为典型的 I 型曲线, 表明 Y 型分子筛主要是以微 孔结构为主, 此外, 在 *P*/*P*₀≥0.4 时, 氮气吸脱附曲

图 11 (a) Y 型分子筛 N₂ 气吸脱附曲线和 (b) 孔径分布 Fig.11 (a) N₂ gas adsorption-desorption curves and (b) pore size distribution of Y molecular sieves

线出现了明显的洄滞环结构,表明Y型分子筛存在 一定量的介孔结构.而由图11(b)可知,孔径分布曲 线主要出现在3.4 nm 处,表明Y型分子筛为典型的 介孔分子筛.

2.4 分子筛元素分析

表 3 为粉煤灰、FCFA、洗涤后 FCFA、Y 型分 子筛元素分析,由表 3 所示,粉煤灰原料与 Na₂CO₃ 混合焙烧后,FCFA 的 C、Na 含量大幅度增加,而经 过洗涤后,FCFA 中的 C 含量由 31.73%减少至 24.78%, Na 含量由 11.52%减少至 11.20%,由此可 得经过洗涤后的 FCFA 主要除去未反应的 Na₂CO₃. 而 Y 型分子筛的 SiO₂/Al₂O₃=9.6, 佐证了 Y 型分子 筛的生成, 而通过预处理和 Y 型分子筛的制备, 原 粉煤灰中 Fe+Ca 占比 (%, 质量分数) 从 24.19% 降 至 5.09%.

2.5 CO2 加氢实验

尽管二氧化碳甲烷化在沸石上的使用的活性金属是以 Ni 为主, 我们以粉煤灰为原料, 将 Fe、Ca 金属原位负载至 Y 型分子筛上, Ca 防止金属 Fe 在高温下的烧结, 用于二氧化碳加氢转化反应体系中, 考察反应活性和产物分布.图 12(a) 和 (b) 为反应压力 4.0 MPa, CO₂ 流量 600 mL·h⁻¹·g⁻¹反应条件下反应

表 3 CFA、FCFA、洗涤后 FCFA、Y 型分子筛元素分析

Table 3 Elemental analysis (%, w) of NaY molecular sieve and raw fly ash								
Element	0	Na	Al	Si	Fe	Ca	С	
CFA	50.20	0.52	6.65	18.37	12.15	12.04	_	
FCFA	40.78	11.52	2.92	6.65	2.49	2.16	31.73	
FCFA _(washed)	43.63	11.20	3.74	9.00	2.28	2.97	24.78	
Y	54.35	7.16	5.61	26.94	2.67	2.42	_	

图 12 反应温度对 CO₂转化率 (a) CH₄ 选择性 (b) 的影响,反应压力对 CO₂转化率 (c) 和 CH₄ 选择性 (d) 的影响 Fig.12 Effects of reaction temperature on CO₂ conversion (a) and CH₄ selectivity (b), and effects of reaction pressure on CO₂ conversion (c) and CH₄ selectivity (d)

温度对 CO₂转化率与 CH₄选择性的影响. 由图可 知, CO₂转化率随着温度的增加而逐步升高,在温度 低于 510 °C 时, CO₂转化率较小, 因 Fe₂O₃可以促 进水煤气变换反应^[14], 产物主要是以 CO 为主, 当温 度到达 510 °C 时, 甲烷选择性随着温度的升高而迅 速上升, 600 °C 时, CO₂转化率到达 54%, 甲烷选择 性到达 41.3%. 因粉煤灰中含有少量的 Fe₂O₃和 Ca 化合物, 含 Ca 的样品会呈现强碱性位点^[15], 随着温 度升高时, CO₂ 更易于变为 CO, 所以随着温度的上 升, CO₂转化率增加, 甲烷选择性增加. 反应温度低 于 450 ℃ 时, CO₂ 在 Fe₂O₃ 表面加氢生成 CO(其反 应方程式: CO₂+H₂→CO+H₂O). 在 CO₂ 加氢制甲烷 的过程中, 按反应途径分为两种: (1) 甲酸盐途径^[16]; (2) 水煤气反应生成 CO, 然后 CO 加氢生成 CH₄^[17]. 在甲酸盐途径中, CO₂ 分子通过化学吸附生成碳酸 盐中间体, 这些碳酸盐中间体分解生成甲酸盐类, 随 后与 H₂ 反应生成 CH₄; 而在 CO 途径中, CO₂ 分子 发生离解式化学吸附, 产生表面羰基和氧, 表面的羰 基和氧随后与 H₂ 反应生成 CH₄. 而在本次实验中, CO₂ 甲烷化的主体机制倾向于 CO 路线, 因为观察 到 CO 为主要副产物.反应压力对 CO₂转化率和 CH₄选择性的影响如图 12(c) 和 (d) 所示,随着反应 压力的增大, CO₂的转化率基本保持不变,维持在 55% 左右,但 CH₄选择性随着压力的升高而增加, 当反应压力为 1.5 MPa 时, CH₄选择性为 25.6%, 当 反应压力为 4.0 MPa 时, 甲烷选择性高达 44.9%.

3 结论

252

以粉煤灰为原料原位合成 Y 型分子筛. 并考察 了 HCl/SiO₂ 比、加入晶种量、H₂O/SiO₂ 比、水热温 度、水热时间对 Y 型分子筛结晶度的影响, 为粉煤 灰的高附加值利用提供了有效方法. 含有 Fe、Ca 金 属的粉煤灰基 Y 型分子筛进行 CO₂ 甲烷化研究, 考 察了反应压力、反应温度对 CO₂ 甲烷化反应的影 响. 优化结果为反应温度 600 ℃, 反应压力 4.0 MPa 时, CO₂ 转化率达到 55%, CH₄ 选择性达到 44.9%.

参考文献:

- Belviso C. State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues[J]. *Prog Energy Combust Sci*, 2018, 65: 109–135.
- [2] Chen Tong-yun(陈同云), Zhang Xue-fu(张学富), Hu Ke-liang(胡克良). The preparation and the characterization of fly ash loading SO₄²⁻/ZrO₂ solid superacid aged at low temperature(低温陈化粉煤灰负载 SO₄²⁻/ ZrO₂ 固体超强酸的制备与表征)[J]. J Mol Catal (China)(分子催化), 2005, **19**(3): 218-221.
- [3] Ramanathan S, Gopinath S C B, Arshad M K M, et al. Nanostructured aluminosilicate from fly ash: Potential approach in waste utilization for industrial and medical applications[J]. J Clean Prod, 2020, 253: 119923.
- [4] Zhang Ya-nan(张亚男). Regulation on the synthesis process of coal fly ash-based NaP zeolite and its removal performance for metal ions and organic pollutants(粉煤灰基 NaP 分子筛的合成过程调控及其对金 属离子和有机污染物的去除性能)[D]. Daqing(大庆): Northeast Petroleum University(东北石油大学), 2023.
- [5] Chen Xiao-ran(陈晓冉), Li Rui-ling(李睿羚), Yu Haojun (俞昊君), et al. Adsorption of ammonia nitrogen in water by fly ash based zeolite molecular sieve (粉煤灰基 沸石分子筛对水中氨氮的吸附)[J]. Environ Prot Chem Ind(化工环保), 2024, 44(2): 1-9.
- [6] Popova M, Boycheva S, Lazarova H, et al. VOC oxida-

tion and CO₂ adsorption on dual adsorption/catalytic system based on fly ash zeolites[J]. *Catal Today*, 2020, **357**: 518–525.

- [7] Liu G Q, Lin Y X, Zhang L L, et al. Preparation of NaA zeolite molecular sieve based on solid waste fly ash by high-speed dispersion homogenization-assisted alkali fusion-hydrothermal method and its performance of ammonia-nitrogen adsorption[J]. J Sci-Adv Mater Dev, 2024, 9(1): 100673.
- [8] Du Jie(杜杰), Zhang Ya-jing(张雅静), Zhang Yu(张字), et al. Effect of SiO₂ promoter on performance of CuO-ZnO/HZSM-5 catalysts for synthesis of DME from CO₂ hydrogenation (SiO₂助剂对 CuO-ZnO/HZSM-5 催化 CO₂加氢制 DME 性能的影响)[J]. J Mol Catal(China) (分子催化), 2016, **30**(4): 346-353.
- [9] Zhang Ya-jing(张雅静), Li De-bao(李德豹), Jiang Dan(姜丹), et al. Effect of Mn promoter on structure and properties of Mn modified CuO-ZnO-ZrO₂/HZSM-5 catalysts for synthesis of dimethyl ether from CO₂ hydrogenation(助剂 Mn对 CO₂加氢制二甲醚 CuO-ZnO-ZrO₂/HZSM-5 催化剂的结构和性能影响)[J]. J Mol Catal (China) (分子催化), 2014, **28**(4): 344-350.
- [10] Zhang Yu(张 宇), Wang Kang-jun(王康军), Zhang Yajing(张雅静), *et al.* Synthesis of dimethyl ether from CO₂ hydrogenation over La_{1-y}Zr_yCu_{0.7}Zn_{0.3}O_x/HZSM-5 catalysts (CO₂加氢制二甲醚 La_{1-y}Zr_yCu_{0.7}Zn_{0.3}O_x/ HZSM-5 催化剂的性能研究)[J]. *J Mol Catal (China)* (分子催化), 2015, **29**(6): 525-533.
- [11] Khatamian M, Yavari A, Akbarzadeh A, et al. A study on the synthesis of [Fe,B]-MFI zeolites using hydrothermal method and investigation of their properties[J]. J Mol Liq, 2017, 242: 979–986.
- Shao P, Hou H J, Wang W L, *et al.* Geochemistry and mineralogy of fly ash from the high-alumina coal, Datong Coalfield, Shanxi, China[J]. *Ore Geol Rev*, 2023, 158: 105476.
- [13] Sun Jun-min(孙俊民), Han De-xin(韩德馨), Yao Qiang(姚强), et al. Classification and characteristics of micro-particles in fly ash from coal-fired power plants (燃煤飞灰的显微颗粒类型与显微结构特征)[J]. J Chin Electron Microsc Soc (电子显微学报), 2001, 20(2): 140-147.
- [14] Suo Zhang-huai(索掌怀), Kou Yuan(寇元), Wang Hong-li(王弘立), et al. Relationships between catalytic activity of CO₂ hydrogenation and Fe–O Bond strength on supported iron catalyst surface (CO₂加氢活性与担 载铁催化剂表面 Fe–O 键强度的关系)[J]. J Mol Catal

(China) (分子催化), 2001, 15(2): 91-94.

- [15] Ashok J, Kathiraser Y, Ang M L, et al. Bi-functional hydrotalcite-derived NiO-CaO-Al₂O₃ catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions[J]. Appl Catal B: Environ, 2015, 172: 116–128.
- [16] Jia X Y, Liu C J. Structural effect of Ni/ZrO₂ catalyst

on CO₂ methanation with enhanced activity[J]. *Appl Catal B: Environ*, 2019, **244**: 159–169.

[17] Xie Y, Chen J J, Wu X, *et al.* Frustrated Lewis pairs boosting low-temperature CO₂ methanation performance over Ni/CeO₂ nanocatalysts[J]. *ACS Catal*, 2022, 12(17): 10587–10602.

Preparation of Fly Ash-based Y-type Molecular Sieves and Their Performance for CO₂ Hydrogenation

LI Jiang-yuan, LI Jian, TUO Chang-min, WU Xiang-lian, AISHA Nulahong

(State Key Laboratory of Carbon-Based Energy Chemistry and Utilization, Xinjiang University and Ministry of Science and Technology, Xinjiang Key Laboratory of Coal Clean Transformation and Chemical Process, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China)

Abstract: Y-type molecular sieves were prepared from fly ash and their CO₂ hydrogenation activity was investigated. Chemical roasting method was adopted to activate fly ash, and Na₂CO₃ was used as the chemical activator to investigate the effects of roasting temperature, roasting time, and the mass ratio of fly ash to sodium carbonate on the activation of fly ash, and the experimental results showed that under the conditions of roasting temperature of 800 °C, roasting time of 2 h, and the mass ratio of fly ash to Na₂CO₃ of 1.0 : 0.8, the products of the roasting of fly ash were dominated by chalcopyrite. The Y-type molecular sieves were prepared by hydrothermal synthesis method using the washed products as raw materials, and the effects of HCl/SiO₂ ratio, crystal seed addition, H₂O/SiO₂ ratio, hydrothermal temperature, and hydrothermal time on the crystallinity of the molecular sieves were investigated, and the Y-type molecular sieves prepared at the conditions of HCl/SiO₂=2.7, crystal seed addition of 6%, H₂O/SiO₂=80, hydrothermal temperature of 100 °C, and hydrothermal time of 12 h were found to have the highest crystallinity. The prepared Y-type molecular sieves were subjected to CO₂ hydrogenation experiments, and the experimental results showed that the CO₂ conversion rate reached 60% and the CH₄ selectivity reached 44.9% under the conditions of reaction temperature of 600 °C and reaction pressure of 4.0 MPa.

Key words: fly ash; molecular sieve; CO₂ hydrogenation; solid waste utilization