综述

文章编号: 1001-3555(2024)03-0273-11

金催化乙炔氢氯化的密度泛函理论研究进展

徐成瑜^{1,2},李晓月^{1,2},李胜楠^{1,2},董杨^{1,2},孙恩琪^{1,2},范天博^{1,2},张福群¹,刘云义^{1,2},郭洪范^{1,2*} (1. 沈阳化工大学化学工程学院,辽宁省化工应用技术重点实验室,辽宁 沈阳 110142; 2. 辽宁省镁钙资源无机功能材料工程研究中心,辽宁 沈阳 110142)

摘要:乙炔氢氯化 (AH) 是生产氯乙烯的主要途径之一, 传统上使用高毒性的汞催化剂, 因此开发无汞催化剂迫在 眉睫.金 (Au) 催化剂是最有潜力的替代催化剂之一, 然而其活性 Au 物种、反应物的活化过程或反应过渡态结构等 催化机理仍不够清晰. 密度泛函理论 (DFT) 在研究由 Au 催化 AH 的反应机理中发挥了极其重要的作用. 我们综述 了 DFT 对金催化剂活性位点、反应物在催化剂上的吸附性质及反应机理的研究进展. 重点讨论了 DFT 对阳离子 金和金簇催化 AH 反应过程的模拟计算, 包括 Au 电子状态、其它原子掺杂及金簇尺寸和形状对催化 AH 反应影响 的模拟. 结果表明 DFT 模拟计算在微观分子尺度上研究反应物的吸附、反应中间体及过渡态等方面发挥了关键作 用, 对理解 Au 催化 AH 反应机理做出了重要贡献.

关键词:密度泛函理论;金基催化剂;贵金属催化;碳载体;载体效应 中图分类号:O643.32 文献标志码:A DOI: 10.16084/j.issn1001-3555.2024.03.009

氯乙烯 (Vinyl chloride monomer, VCM) 是合成 聚氯乙烯 (Polyvinyl Chloride, PVC) 的单体^[1-3]. PVC 性能优异, 广泛用于汽车、医疗、包装等行业^[4-6]. 标 普全球预计 2027 年全球 PVC 需求将达 5.8×10⁷ t, 因此 VCM 的生产仍非常重要^[7].

VCM 有乙烯法、乙烷法和乙炔法 3 种生产工 艺^[8]. 乙烯法由乙烯经氯化或氧氯化合成二氯乙烷, 然后通过脱除氯化氢生产 VCM,该方法被发达国 家广泛采用^[9]. 而乙烷法则以天然气资源为原料,但 离工业化还有很大距离^[10]. 在煤储量丰富的中国,乙 炔氢氯化 (Acetylene Hydrochlorination, AH) 是生 产 VCM 的主要途径^[11-12]. 该法首先利用生石灰与 煤在 2 000 ℃ 左右生成电石,再通过电石与水反应 得到乙炔气体^[13-14]. 然后乙炔与氯化氢在催化剂作 用下进行亲电加成得到 VCM,反应如图 1.

传统上 AH 以负载型氯化汞 (HgCl₂) 为催化剂, 该催化剂的主要问题是在反应过程中剧毒的氯化汞 易升华到环境中.目前已超过 140 个国家签署《水 俣公约》用于控制汞排放,因此开发新型的无汞催

Fig.1 Synthesis of vinyl chloride monomer (VCM) by AH

化剂迫在眉睫.如今,研究的替代催化剂包括金属、 非金属催化剂等^[15].其中非金属催化剂的优势是成 本低,但其性能通常比金属催化剂低^[16-18].早在 1985年,Hutchings等^[11,15,19]先后将催化活性与金 属阳离子的亲电性(图 2(a))、标准还原电位关联 (图 2(b)),发现各金属氯化物的催化活性顺序为 Pd^{II}>Hg^{II}>Cu^{II}>Cu^{II}>Ag^{II}>Cd^{II}>Zn^{II[19-20]}.由此预测 具有更高标准电极电位的金对 AH 应该具有更好的 催化能力,这在之后获得了证实(图 2(c)).金基催化 剂由于具有较高的活性和稳定性,目前成为最具潜 力的替代催化剂之一.此外,研究人员还通过掺杂 Cu^[21]、Pd^[22]、Pt^[23]等其他金属对其进行改性,进一 步提高其对 AH 的催化效率.

Au 催化的 AH 的反应体系目前存在的一个主

收稿日期: 2024-01-31;修回日期: 2024-03-07.

* 通信联系人, E-mail: hongfanguo@126.com.

基金项目: 国家自然科学基金项目 (21403143); 辽宁省自然科学基金项目 (20180510007); 辽宁省教育厅项目 (JYTMS20231517, LJKZ0431, LJ2020027); 辽宁省"兴辽英才计划"人才培养项目 (XLYC1907167); 辽宁省高等学校创新人才支持计划项目 (LR2018078)(National Natural Science Foundation of China (21403143); Natural Science Foundation of Liaoning Province (20180510007); Education Department of Liaoning Province (JYTMS20231517, LJKZ0431, LJ2020027); Liaoning Revitalization Talents Program(XLYC1907167); Innovative Talents Support Program for Colleges and Universities of Liaoning Province (LR2018078)).

作者简介: 徐成瑜 (1998-), 男, 硕士研究生, 研究方向为贵金属催化剂. E-mail: xuchengyu98@163.com(Xu Cheng-yu(1998-), male, master degree candidate, mainly engaged in research of noble metal catalysts. E-mail: xuchengyu98@163.com).

图 2 (a) "金属氯化物的 AH 活性"与"金属阳离子亲电性除以金属价态"之间的关系 (200 ℃, GHSV=150 h⁻¹)(•) 能够形成亚稳 态炔化物的金属^[11]; (b) 金属氯化物的 AH 活性与金属标准还原电势之间的关系^[15]; (c) AH 中金属阳离子的催化活性 与标准电极电位的关系^[19]

Fig.2 (a) Correlation of AH activity of metal chlorides with the electron affinity of the metal cation divided by the metal valence (200 °C, GHSV=150 h⁻¹) (•)Metal capable of forming metastable acetylide ^[11]; (b) The relationship between AH activity of metal chlorides and standard reduction potential ^[15]; (c) The correlation between catalytic activity and standard electrode potential of metal cations in AH ^[19]

要问题是催化活性物种、反应中间体等微观尺度上的催化机理不够清楚. 传统实验方法难以阐明 Au的催化机理, 密度泛函理论 (Density Functional Theory, DFT) 因在这方面具有优势^[24-25]. 科研人员们^[26] 以量子化学 DFT 为基础, 对 Au 催化 AH 的反应体系进行了系统研究. 为理解 Au 催化 AH 机理发挥了重要作用. 我们按不同金物种为活性中心的DFT 研究为逻辑顺序, 讨论了 DFT 在研究 Au 催化 AH 催化体系上的进展.

1 DFT 对 Au 阳离子催化 AH 研究

AH 催化体系中催化剂的活性中心一直是研究的热点.目前大多研究者认为阳离子 Au 是主要的Au 活性物种.早期研究者们认为 Au(III) 是主要的活性中心,但 Hutchings^[27-28] 先后发现表面 Au(III) 含量最高的催化剂未显示出最高的催化活性^[27],且新鲜催化剂也含有大量的 Au(I) 物种^[28],因而认为催化活性并不完全依赖 Au(III).除了 Au(I) 外,代斌等^[29]的研究认为较小粒径的纳米 Au 簇也可能具有催化活性.按不同金活性物种 (Au(III)、Au(I)和 Au_n)的逻辑顺序对比它们在吸附活化反应物、反应中间体及过渡态的形成等过程,并讨论了某些载体对它们催化效果的影响.

Conte 等^[30] 以 AuCl₃ 为模型研究 Au(III) 的催 化性质, 优化后 AuCl₃ 的最低未被占据的分子轨道 (LUMO)状态如图 3 所示. LUMO 图中在两个反式 Cl 配体之间的配合物平面上显示出一个较大的波 瓣,这个区域表现出 Au(III)的亲电性质,意味着 C₂H₂将先与 AuCl₃活性中心空位配合,再分别与 HCl 中的 Cl 和 H 加成.

图 3 AuCl₃的 LUMO 图^[30] Fig.3 The calculated LUMO state for AuCl₃^[30]

计算得到的反应路径如图 4, 其中 HCl 的初始 配位 (状态 2) 能量为-105 kJ·mol⁻¹, 同样配位在 AuCl₃空位的 C₂H₂ (状态 3) 能量为-168 kJ·mol⁻¹, 验证了 C₂H₂更容易与 AuCl₃ 的活性中心配位. 从 C₂H₂与 Au (III) 配合物的 π 配位开始, 产生过渡态 TS-1、TS-2, 氯化氢分子中氢氯键被打破, 氯原子连 接 C₂H₂ 的其中一个碳原子, 氢原子与 AuCl₃中的 1 个氯结合, C₂H₂ 的另一碳原子与金属中心的反式位 置 C(*sp*²)—Cl 键形成 σ 键, 其中 TS-2 所在反应路径 的控速步骤为氯在 C₂H₂ 上的加成. 结果还表明 C₂H₂和 HCl 不能同时配位到 AuCl₃的 Au (III) 中 心上.

图 4 AH 反应能量的分布 (注: 图中能量单位均为 kJ·mol⁻¹, 过渡态标记为 TS)^[30] Fig.4 Reaction energy profiles for AH(Note: all energies in kJ·mol⁻¹, transition states marked TS)^[30]

由于三氯化金在低温气相中以平面二聚体 (Au₂Cl₆)形式存在,因此Zhang等^[31]就将Au₂Cl₆作 为活性中心进行结构优化并模拟其反应路径等机 理(图 5).结果显示HCl吸附在Au₂Cl₆上的结构不 能稳定存在.而起始共吸附结构为a、b、c、d和e对 应的4个可能的反应路径1、2、3和4中(图 6),路 径4和2的活化能分别为97.74和100.33 kJ·mol⁻¹, 低于路径3和1的122.31和124.90 kJ·mol⁻¹,且路 径4和2的反应速率常数比路径3和1的大,所以 路径4和2更易发生.

图 5 Au_2Cl_6 的 LUMO 图^[31] Fig.5 The calculated LUMO state for $Au_2Cl_6^{[31]}$

同时路径 4 和 2 互为竞争路径. 在无 HCl 的条 件下, a, b, e 结构中 b 优先发生路径 2, 即先吸附 C₂H₂ 进行反应, 同时产生副产物二氯乙烯, Au₂Cl₆ 催化剂因失去两个 Cl 原子而失活, 并且不能通过吸 附 HCl 重新活化. e 结构不稳定, 将转化为 a 结构通 过路径 1 进行反应, 对于这个反应, 若 HCl 有效吸 附在 Au 位点上, 催化剂将恢复为初始的 Au₂Cl₆ 结构. 路径 4 中 Au₂Cl₆ 吸附 HCl 后催化 C₂H₂, HCl 提供氯乙烯基中的氯, 若气相中的 HCl 有效吸附在 Au 位点上, 催化反应后将保持 Au₂Cl₆ 的配位结构, 并恢复到初始平面构型, 催化活性不会降低. 否则需 要额外的 HCl 帮助 VCM 从 Au 位点脱附并释放活 性位点, 重新激活 Au₂Cl₆ 催化剂.

根据 Hutchings 的理论^[19, 25], Au³⁺的标准电极电势 (E(Au³⁺)=1.5) 小于 Au⁺的标准电极电势 (E (Au⁺)=1.68), 因此预测 Au⁺的催化活性可能会更高.为了验证此推论, Tian 等^[6] 将乙炔分子分别靠近 AuCl₃, AuCl 和 AuCN, 优化后得到相应的乙炔配合物如图 7.

利用电荷布局分析 (Natural popul-ation analysis NPA) 研究 Au 价电子层的电荷分布以及 Au 的有效电荷量 (q(Au)),数据如表 1. 5d 轨道的电子反馈能力 (电子布居数下降值) 符合下述规律: AuCl₃ (0.068) < AuCN (0.132) < AuCl (0.202), AuCl 的电子反馈能力很强,以至于其结合 C₂H₂ 后, Au 中心的 NPA 电荷反而略有增加,证明 Au⁺比 Au³⁺的活性更强.

此外, 研究还发现 C_2H_2 总是通过 π 配位形式吸 附在 Au 化合物上, 得到 AuCl₃(η^2 -C₂H₂)、AuCl (η^2 -C₂H₂) 和 AuCN(η^2 -C₂H₂) 构型. 其中 AuCl₃(η^2 -C₂H₂) 结构优化后观察到直线型的 C₂H₂ 分子向着远离 Au 方向弯曲, 氢原子和直线型乙炔间的夹角变化 了 8.1°, 碳碳键长延长至 0.121 5 nm; 相应地, 碳碳

图 6 以共吸附结构 a、b、c、d 分别开始的 AH 反应路径 1、2、3、 $4^{[31]}$ Fig.6 AH reaction pathways 1, 2, 3, and 4 started with co-adsorption structures a, b, c, and $d^{[31]}$

图 7 C₂H₂、AuCl、AuCl (η²-C₂H₂)、AuCl₃、AuCl₃ (η²-C₂H₂)、 及 AuCN、AuCN (η²-C₂H₂)的优化构型. Au-金色; Cl-绿色; C-灰色; H-浅灰色; N-蓝色^[6]. (注: ηⁿ 中 n 代表哈普托数, 指配体中有 n 个相连的原子和中心原子配位)
Fig.7 Optimized structures of C₂H₂, AuCl, AuCl(η²-C₂H₂), AuCl₃, AuCl₃(η²-C₂H₂), AuCN and AuCN(η²-C₂H₂). Au atom: golden; Cl atom: green; C atom: gray; H atom: light gray; N atom: blue ^[6]. (Note: N in ηⁿ represents the Haptto number, which refers to the coordination of n connected atoms and central atoms in the ligand) 间的 Wiberg 键指数 (Wiberg 键级表示原子成键强 度) 从 3.00 降低至 2.62, AuCl (η^2 -C₂H₂) 与 AuCN (η^2 -C₂H₂) 中碳碳间的 Wiberg 键指数分别下降至 2.57 和 2.65, 碳碳三键都得到活化且 AuCl (η^2 -C₂H₂) 与 AuCN (η^2 -C₂H₂) 对 C₂H₂ 结构改变的比 AuCl₃ (η^2 -C₂H₂) 更为显著 (表 2).

Au-C 间距离在 Au⁺配合物中比在 Au³⁺配合物 中小, 可见 AuCl 和 AuCN 对 C₂H₂ 的吸附作用要强 于 AuCl₃. 计算 AuCl₃、AuCl 和 AuCN 与 C₂H₂ 之间 的吸附能发现, AuCl 的吸附能最大, 表明 Au⁺配合 物的稳定性高于 Au³⁺配合物, Au⁺金催化效果可能 比 Au³⁺催化剂更胜一筹.

对于 Au (I) 的催化反应机制还没有达成共识^[25]. Zhao 等^[32] 模拟 Au (I) 的催化反应机理发现活性位 点是由 Au (I) 和 Au (III) 组成的催化循环,反应路 径如图 8 所示. HCl 中的氢原子吸附在 AuCl 中的 氯原子上,形成中间体 b,乙炔与中间体 b 中的金原 子作用形成中间体 c,随后乙炔吸附到 AuCl 中的氯 $\operatorname{AuCl}(\eta^2 - C_2 H_2)$

AuCN

AuCN(η^2 -C₂H₂)

6s(0.82)5d(9.58)6p(0.16)

6s(0.87)5d(9.71)6p(0.01)

6s(0.91)5d(9.58)6p(0.10)

Table 1 NPA population analysis of AuCl ₃ , AuCl ₃ (η^2 -C ₂ H ₂), AuCl, AuCl(η^2 -C ₂ H ₂), AuCN and AuCN(η^2 -C ₂ H ₂) ^[6]											
	6s	$6p_x$	$6p_y$	6p _z	$5d_{xy}$	$5d_{xz}$	$5d_{yz}$	$5d_{x^2-y^2}$	$5d_{z^2}$	Nat. electron config.	q(Au)
AuCl ₃	0.656	0.173	0.141	0.090	1.995	1.997	1.998	1.368	1.948	6s(0.66)5d(9.31)6p(0.40)	+0.608
AuCl ₃ (η^2 -C ₂ H ₂)	0.670	0.232	0.193	0.127	1.996	1.995	1.930	1.400	1.952	6s(0.67)5d(9.27)6p(0.55)	+0.473
AuCl	0.683	0.019	0.012	0.019	1.995	2.000	1.995	1.877	1.959	6s(0.68)5d(9.83)6p(0.05)	+0.433

1.987

2.000

1.990

1.793

1.965

1.833

1.840

1.838

1.832

1.960

1.973

1.969

表 1 AuCl₃ 和 AuCl₃(η^2 -C₂H₂), AuCl 和 AuCl(η^2 -C₂H₂), AuCN 和 AuCN (η^2 -C₂H₂) 的 NPA 布居分析结果^[6]

表 2 C₂H₂、AuCl、AuCl (η²-C₂H₂)、AuCl₃、AuCl₃(η²-C₂H₂)、AuCN 和 AuCN (η²-C₂H₂) 优化构型参数^[6]

Table 2 Most relevant geometric parameters of C_2H_2 , AuCl, AuCl(η^2 -C₂H₂), AuCl₃, AuCl₃(η^2 -C₂H₂), AuCN and AuCN(η^2 -C₂H₂)^[6]

	^a Au—CH	Au-Cl	Au-Cl ₃	AuCN	C≡N	∠Cl1—Au—Cl2	Au-C ^b	С—С	$\angle H - C - C$	Au−C≡C
AuCl ₃	0.2274	0.225 4		-	-	166.2	_	-	_	_
AuCl ₃ (η^2 -C ₂ H ₂)	0.2323	0.2269		_	_	178.6	0.2322	0.121 5	171.9	0.224 1
AuCl	_	-	0.225 4	_	_	-	-	_	-	-
$AuCl(\eta^2 - C_2H_{2})$	_	-	0.2279	-	_	_	0.2158	0.123 0	163.8	0.2114
AuCN	_	-	-	0.192 9	0.1156	-	-	_	-	-
AuCN(η^2 -C ₂ H ₂)	-	-	_	0.1979	0.1156	_	0.221 5	0.122 1	167.5	0.2129

a. All bond distances are in nm, all angles in degrees;

0.818

0.865

0.907

0.038

0.002

0.013

0.075

0.005

0.074

0.047

0.002

0.013

1.996

1.960

1.970

b. Refers to C atoms in C_2H_2 if there is no other special instruction

图 8 AH 在 AuCl/AC 催化剂上的催化循环机理^[32] Fig.8 The proposed catalytic cycle of AuCl/AC-catalyzed AH of HCl and C₃H₂^[32]

原子上,取代 HCl 分子,同时导致 C₂H₂ 的 C 原子和 HCl 的 H 原子相互吸引,形成不稳定的物质 *c-x*.同时, HCl 的氯原子更接近 *c-x* 的 Au 中心,随后HCl-C₂H₂ 配合物通过过渡态 TS-d 越来越靠近中间

体 c-x 的 Au 中心, 形成正方形四配位中间体 e, 其 中 AuCl 的金属中心被氧化为 Au (III), 然后中间 体 e 经过 1 个 Cl 原子从 Au 位点转移到氯乙烯基, 通过过渡态 TS-f 形成 C-Cl 键, 生成产物配合物 g, 同时 Au (III) 被还原为 Au(I). 最后, 配合物 g 释放 出产物 VCM.

通过 Wiberg 键指数分析显示 b 中的 Cl—Au 键作用很弱, 说明 HCl不能稳定吸附在 AuCl 的 Au 位点上, 从 *c-x* 到 TS-d, HCl 氢氯键被拉长, 在 TS-d 中被完全激活. HCl 的 H 原子结合 C₂H₂ 中的 1 个 C 原子, 形成了 C—H 键, Cl 原子与 Au 原子形成 Au—Cl 键, 结果表明 HCl 的加成是通过 HCl 和 C₂H₂ 协同添加到 AuCl 中而发生的, 与 Hutchings 讨论的机制相一致^[33].

除 Au 阳离子物种外, 碳载体上含氧基团也能显著影响催化性能, 改变催化反应机制, 甚至有研究表明表面无含氧基团的石墨碳是没有催化活性的^[34]. Zhao 等^[35]利用 DFT 研究含氧基团对催化剂吸附性能的影响, 研究显示 AuCl 在羰基氧原子上的吸附能 (318.1 kJ·mol⁻¹) 远低于在石墨表面上的吸附能量 (285.2 kJ·mol⁻¹)(图 9). 表明, AuCl 倾向于结

+0.438

+0.422

+0.416

合羰基上的氧原子形成 Au-O-C 的构型, 进而稳定 活性中心, 提高催化性能.

图 9 AuCl 在 (a) 石墨表面和 (b) 羰基氧原子和苯环 碳原子上的吸附构型. Au-黄色; Cl-浅绿色; C-灰色; H-白色; O-红色.

Fig.9 Adsorption configurations of AuCl on (a) a graphite surfaces and (b) the oxygen atom of carbonyl and carbon atom of benzene ring, Au-yellow; Cl- light green; C-Grey; H-white; O-Red.

如今,金阳离子催化剂在制备和应用过程中存 在被还原引起的催化剂失活问题^[36-37].使得提高活 性物种稳定性与延长催化剂使用寿命的课题变得 越来越重要^[38-40].例如李小年课题组^[5]基于 DFT 模 拟结合实验研究发现,Au-N(CN)₂/AC 催化剂中的 [N(CN)₂] 配体促进了阳离子金和配体之间的电子 转移,有效抑制阳离子金还原,提高了催化剂的稳定 性,且该催化剂催化的 AH 中速控步骤反应壁垒更低.

2 DFT 对 Au 簇的研究

除了阳离子 Au, 越来越多的研究表明, 具有一定尺寸的 Au 簇也展示了催化 AH 的能力^[9-10]. 因此研究者也以 Au 簇为催化中心进行了 DFT 模拟^[11].

Wang 等^[26] 发现由于 HCl/Au_n 比 C₂H₂/Au_n 具 有更高的 HOMO - LUMO 间隙, Au_n 将充当电子转 移的桥梁,将电子从 C₂H₂ 转移到 Au 簇,再从 Au 簇 转移到 HCl. HCl 和 C₂H₂ 共同被 Au 簇活化,在催 化反应中表现出协同效应. Au 簇催化 AH 的整个过 程由 2 个过渡态和 1 个中间体组成, HCl 的解离是 速控步骤. 总体而言, Au 簇尺寸越小性能表现更好, 由奇数个 Au 原子组成的团簇比偶数个原子的团簇 性能更好.

为进一步研究 Au 簇尺寸和形状对催化 AH 反应的影响, Gautam 等^[41]利用 DFT 理论模拟 C₂H₂ 在 Au_n (n=3~10, 图 10) 上的活化, 发现 C₂H₂ 以 π 和 σ 两种成键模式吸附在 Au_n 表面上, 模拟结果如图 11 和表 3 所示. 其中, π 模式吸附涉及 1 个金原子, σ 模式涉及 2 个金原子. 由于 Au_n 与乙炔分子之间的电子捐赠和电子回赠反馈, 更有利于乙炔分子以 σ 键吸附时, C₂H₂ 中碳碳三键被拉伸活化更具活性.

图 10 Au_n(n=3~10) 团簇的优化几何形状^[41] Fig.10 Optimized geometries of Au_n (n=3~10) clusters^[41]

并且 C₂H₂ 在 Au_n上的吸附能随 n 从奇到偶表 现出振荡行为,具有奇数个金原子的团簇或配合 物比具有偶数金原子的团簇具有更高的吸附能 (图 12).以 Au₄/C₂H₂和 Au₈/C₂H₂配合物表现出闭壳 构型为例,偶数个的 Au_n与 C₂H₂形成的配合物拥 有特殊稳定性,抑制了另一反应物在其上的吸附.所 以奇数金簇更有利于乙炔分子的活化.

众所周知,许多因素会影响 Au 簇的催化活性,

金簇尺寸、形状、其它元素掺杂等.因此,如图 13 所 示, 康利华团队^[42]比较了 AH 在 Au₇、Au₈ 以及 Si 掺杂的 Au 团簇 (Au₆Si、Au₇Si) 上的反应. 结果显 示 Au₇Si 的带隙 (ΔE_g)集群小于未掺杂的 Au₈,催化 活性更高. 与原始的 Au₈ 团簇相比, Au₇Si 显著降低 了 AH 活化屏障,由 91.38 kJ·mol⁻¹ (Au₈) 降低为 69.86 kJ·mol⁻¹ (Au₇Si). 另一方面, AH 在 Au₆Si 团簇 上的反应活化势垒并不低于 Au₇ 团簇, Au₆Si 的带

图 11 吸附在 Au_n (n=3~10) 团簇上的乙炔结构形状 (C—C 的键长值, /nm)^[41] Fig.11 Optimized geometries of C₂H₂ adsorbed on Au_n (n=3~10) clusters(C—C bond length, /nm)^[41]

表 3	金团簇与 HOMO	和 LUMO 轨道	道的能量以及吸附能的	」优化[**]

Table 3 Optimized energy of Au clusters, HOMO and LUMO as well as adsorption energy	[41]
---	------

Cluster	Energy (a.u.)	Energy of HOMO (a.u.)	Energy of LUMO (a.u.)	Adsorption Energy E_d^{a} / eV
Au ₃	-407.532	-0.221	-0.144	1.281
Au_4	-543.422	-0.210	-0.174	1.259
Au ₅	-679.303	-0.201	-0.145	0.810
Au ₆	-815.215	-0.224	-0.145	0.519
Au ₇	-951.073	-0.197	-0.151	0.968
Au ₈	-1 086.976	-0.221	-0.165	0.615
Au ₉	-1 222.843	-0.197	-0.166	0.633
Au ₁₀	-1 358.746	-0.216	-0.167	0.470

a. Adsorption energy refers to that between acetylene and Au_n

隙 (ΔE_g) 要比 Au₇ 的大, 计算结果如表 4 所示, C₂H₂ 在团簇上的吸附能大于 HCl, 说明 C₂H₂ 优先吸附在 团簇上. HCl 在解离释放 Cl 原子后, 随后将质子从 金簇转移给乙炔氯化物, 发生 H 原子的加成. 偶数

图 13 对 C₂H₂、HCl、Au₇、Au₈、Au₆Si 以及 Au₇Si 的结构优化^[42]

个金原子的团簇的能量间隙通常大于奇数个金原子 团簇的能量间隙,原因可能归于奇数个金原子的团

表 4 对 C₂H₂、HCl、Au₇、Au₈、Au₆Si 及 Au₇Si 的 HOMO 和 LUMO 轨道带隙计算结果, 以及反应物和团簇之间的 HOMO-LUMO 带隙计算结果^[42]

Table 4 The HOMO and LUMO energies and energy gaps of C_2H_2 , HCl, the pristine Au_7 and Au_8 clusters, and the doped Au_6Si and Au_7Si clusters, as well as the HOMO - LUMO energy gaps between each reactant and each cluster (isovalue =0.02)^[42]

Spacias	НОМО	LUMO					
species	energy/eV	energy/eV	For the species	For cluster $\rightarrow C_2 H_2$	For cluster→HCl	For $C_2H_2 \rightarrow cluster$	For HCl→cluste
C_2H_2	-7.12	-0.26	_	_	_	_	_
HC1	-7.89	-0.79	-	_	_	_	_
Au_7	-5.40	-4.10	1.30	_	-4.61	-3.02	-3.79
Au ₆ Si	-5.76	-4.08	1.68	-5.50	-4.97	-3.04	-3.81
Au_8	-6.09	-4.46	1.63	-5.83	-5.30	-2.66	-3.43
Au ₇ Si	-5.25	-3.89	1.36	-4.99	-4.46	-3.23	-4.00

簇结构拥有更多的边缘、角点位.

Zhao 等^[43]研究了载体对 Au₃ 团簇催化性能的 影响, 如图 14 和表 5 所示, 分别研究了单层石墨烯 及 N 原子掺杂石墨烯对 Au₃ 催化作用的影响, 其中 乙炔分子的吸附为初始反应步骤, 速控步骤是 TS1 中的氯化氢分子解离. 模拟结果显示石墨烯载体能 明显增强对反应物的吸附能力, 在石墨烯上掺杂 N 原子后, 吸附能力进一步提高. 增强 HCl 与 C₂H₂-Au₃/N-石墨烯上的吸附能使得反应活化能下降, 与 其较低的反应势垒的结果一致. 另外, N 掺杂可以增 大石墨烯 HOMO 与 Au₃ 的 LUMO 之间的能隙, 导 致 Au₃ 团簇和石墨烯之间的相互作用显著减弱.

图 14 (a) Au₃, (b) C₂H₂, (c) HCl, (d) 纯石墨烯, (e) N 掺杂的 石墨烯, (f) Au₃/石墨烯和 (g) Au₃/N-石墨烯的结构优化 (金、 氯、碳、氮和氢原子分别用黄色、绿色、灰绿色、蓝色和 银灰色表示)^[43]

Fig.14 Optimized structures of (a) Au₃, (b) C₂H₂, (c) HCl, (d) pure graphene, (e) N-doped graphene, (f) Au₃/graphene, and (g) Au₃/N-graphene(Au, Cl, C, N, and H atoms are depicted in yellow, green, gray-green, blue, and silver-gray, respectively)^[43]

表 5 C₂H₂ 和 HCl 在 Au₃/(N-) 石墨烯以及其它 Au 催化剂 上的吸附能和能垒 (kJ·mol⁻¹)

Table 5 The optimal adsorption energies of C_2H_2 and HCl and the energy barrier onto Au₃/(N-)graphene and other calculated

Au-based	catalysts	$(kJ \cdot mol^{-1})$
----------	-----------	-----------------------

	C_2H_2	HCl	Co-adsorption	Energy barrier
Au ₃	-78.69	-18.42	-96.69	92.93
AuCl ₃	-75.47	-39.60	-52.49	49.64
Au ₃ /graphene	-93.30	-32.44	-116.83	100.00
Au ₃ /N-graphene	-95.02	-41.90	-130.60	97.36

因此,上述 DFT 研究结果说明,在 AH 反应中, 并不是只有金阳离子可以进行催化反应, Au 簇同样 可以具有良好的催化效率^[44].利用 DFT 模拟比较各 种活性物种的反应机理等特征、进而确定最可能的 活性物种的研究还在进行.

此外,为进一步提高 Au 簇的催化能力,可对其 进行适当的掺杂或改性. 今后的工作可结合 DFT 计 算对不同 Au 簇及改性后的能量、吸附性质等进行 研究与比较,进而指导对 Au 簇的改性.

3 结论与展望

到目前为止, 以氯化物形式存在的 Au⁺与 Au³⁺ 阳离子物种作为活性中心是 DFT 研究的重点, 其 DFT 计算显示, 乙炔碳碳三键以 π - σ 配体形式吸附 在 Au 活性位点上, 活化后的 C₂H₂ 与 HCl 继续反应 生成 VCM, VCM 脱附后催化剂恢复初始状态. 当 催化体系中缺少 HCl 或 HCl 不能有效吸附在催化 剂上时, C₂H₂ 会吸附在 Au 催化剂上并与催化剂上 的氯发生副反应生成二氯乙烯. 除了阳离子 Au, DFT 对金簇催化 AH 也有一些研究. 金簇的尺寸、 形状和电子性质均能影响金簇对 AH 反应的催化活性.其中,含奇数个金原子的 Au 簇通常比含偶数个金原子 Au 簇更利于乙炔分子的活化,对其吸附力 更强,从而促进 AH 反应.另外,DFT 对载体的作用 也进行了一定的研究.DFT 计算结果表明,碳载体 可以起到很多重要的作用.例如,与碳载体上的一些 表面官能团 (如羰基) 直接键合的 Au 阳离子也具有 催化能力.在对石墨烯载体掺杂 N 原子前后进行模 拟计算,发现 N 原子的掺杂能明显增强 Au 与载体 间的作用力.

总之, DFT 计算给出了不同 Au 活性中心可能 发生的不同反应机理,这些研究既能阐明 Au 基催 化剂对 AH 的活性来源, 也能用于指导如何克服催 化剂的失活问题. 例如, 当以阳离子 Au 为活性中心 时,针对阳离子 Au 可被 C2H2 还原而导致活性下降 的问题,除通过增强其与配体之间的电子转移的方 法外,也可通过 DFT 分析研究如何通过调控 HCl 在催化剂上吸附的强弱降低催化剂的失活.另外,由 于载体可明显影响催化性能,将来可进一步加强 DFT 对不同掺杂位、掺杂比例等对催化剂结构与性 质影响的计算模拟,进而指导新型载体材料的设计. 现如今, DFT 的应用范围越来越广泛. 其中, 利用 DFT 计算分析掺杂其他金属前后活性中心电子状 态的变化、载体的微观结构和性能、以及活性组分 与载体之间的相互作用等已经变的可行.将来,随 着 DFT 研究手段的不断进步和使用的不断增加及 深入, DFT 研究在指导精准调控催化剂组成、结构 等用以增加催化性能方面将发挥越来越大的作用, 进而获得低成本、高效率的无汞 AH 催化剂.

参考文献:

- [1] Abreu C M R, Rezende T C, Serra A C, et al. Convenient and industrially viable internal plasticization of poly (vinyl chloride): Copolymerization of vinyl chloride and commercial monomers[J]. *Polymer*, 2023, 267: 125688.
- [2] Feng F, Jin C, Wang S, *et al.* Self-oxidation of Au-[Bmim][Cl₃] catalyst with enhanced activity and stability for acetylene hydrochlorination[J]. *Appl Catal A Gen*, 2023, 661: 119238.
- [3] Zhang J, Liu N, Li W, et al. Progress on cleaner production of vinyl chloride monomers over nonmercury catalysts[J]. Front Chem Sci Eng, 2011, 5(4):

514-520.

- Cruz P P R, Da Silva L C, Fiuza-Jr R A, et al. Thermal dehydrochlorination of pure PVC polymer: Part I—Thermal degradation kinetics by thermogravimetric analysis[J]. J Appl Polym Sci, 2021, 138(25): 50598.
- [5] Zhao J, Wang S, Wang B, et al. Acetylene hydrochlorination over supported ionic liquid phase (SILP) goldbased catalyst: Stabilization of cationic Au species via chemical activation of hydrogen chloride and corresponding mechanisms[J]. Chin J Catal, 2021, 42(2): 334–346.
- [6] Tian Xiao-hui(田晓晖). Efficient gold catalysts for acetylene hydrochlorination: Development and mechanism study(乙炔氢氯化高效金催化剂开发及其催化 机理研究)[D]. Hangzhou(杭州): Zhejiang University (浙江大学), 2015.
- [7] Pang Xiao-hua(庞晓华). The global polyvinyl chloride market in the United States and India are eyecatching(全球聚氯乙烯市场美印两国抢眼)[J]. China Petrochem Ind Obs(中国石油和化工产业观察), 2023, 2023(3): 99.
- [8] Mijangos C, Calafel I, Santamaría A. Poly (vinyl chloride), a historical polymer still evolving[J]. *Polymer*, 2023, 266: 125610.
- [9] Gel'perin E, Bakshi Y M, Avetisov A, et al. Kinetic model of the oxidative chlorination of ethane to vinylchloride II. Reactions of ethylene, 1,2-dichloroethane and vinylchloride[J]. Kinet Catal, 1979, 20(1): 102–108.
- [10] Xu H, Luo G. Green production of PVC from laboratory to industrialization: State-of-the-art review of heterogeneous non-mercury catalysts for acetylene hydrochlorination[J]. J Ind Eng Chem, 2018, 65: 13–25.
- [11] Johnston P, Carthey N, Hutchings G J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. J Am Chem Soc, 2015, 137(46): 14548–14557.
- [12] Davies C J, Miedziak P J, Brett G L, *et al.* Vinyl chloride monomer production catalysed by gold: A review[J]. *Chin J Catal*, 2016, **37**(10): 1600–1607.
- [13] Fu R G, Li Z. Direct synthesis of symmetric diarylethynes from calcium carbide and arylboronic acids/esters[J]. *Eur J Org Chem*, 2017, 2017(45): 6648– 6651.
- [14] Kang L, Cheng B, Zhu M. Pd/MCM-41 catalyst for acetylene hydrogenation to ethylene[J]. *Royal Soc Open Sci*, 2019, 6(11): 191155.

- [15] Hutchings G J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts[J]. *J Catal*, 1985, **96**(1): 292–295.
- [16] Malta G, Freakley S J, Kondrat S A, et al. Acetylene hydrochlorination using Au/carbon: A journey towards single site catalysis[J]. Chem Commun, 2017, 53(86): 11733–11746.
- [17] Lin Y, Sun X, Su D S, *et al.* Catalysis by hybrid sp²/sp³ nanodiamonds and their role in the design of advanced nanocarbon materials[J]. *Chem Soc Rev*, 2018, 47(22): 8438–8473.
- [18] Li X, Pan X, Yu L, et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene[J]. Nat Commun, 2014, 5(1): 3688.
- [19] Shinoda K. The vapor-phase hidrochlorination of acetylene over metal chlorides supported on activated carbon[J]. *Chem Lett*, 1975, 4(3): 219–220.
- [20] Nkosi B, Coville N J, Hutchings G J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts[J]. *Appl Catal*, 1988, **43**(1): 33–39.
- [21] Nkosi B, Adams M D, Coville N J, et al. Hydrochlorination of acetylene using carbon-supported gold catalysts: A study of catalyst reactivation[J]. J Catal, 1991, 128(2): 378–386.
- [22] Wang L, Shen B, Zhao J, *et al.* Trimetallic Au-Cu-K/AC for acetylene hydrochlorination[J]. *Can J Chem Eng*, 2017, **95**(6): 1069–1075.
- [23] Chen Z, Wang S, Zhao J, *et al.* Advances in singleatom-catalyzed acetylene hydrochlorination[J]. *ACS Catal*, 2024, **14**(2): 965–980.
- [24] Wang Wei-ze(王炜泽), Liu Lu(刘 璐), Hu Yan-gang (胡延岗), et al. Density functional theory calculation of CO₂ hydrogenation over single Zr atom incorporated N doped graphene(氮掺杂石墨烯负载单原子 Zr 催化 CO₂加氢的密度泛函理论研究)[J]. J Mole Catal (China) (分子催化), 2023, **37**(5): 419–427.
- [25] a. Song Wei-yu(宋卫余), Yang Min(杨 敏), Wang Linzhe(王 林 哲). Hetero-metallic Cu-MAZ catalyzed methane partial oxidation: A DFT study (异金属铜-氧 MAZ 分子筛催化甲烷部分氧化反应 DFT 研究)[J]. J Mole Catal (China)(分子催化), 2021, 35(5): 404-414.
 b. Cheng Qi (程 琪), Nie Xiao-wa (聂小娃), Guo Xinwen (郭新闻). Density functional theory study of the effect of Ru doping on the hydrodeoxygenation of phenolic compounds over Fe catalyst (Ru 掺杂对 Fe 催

化剂上酚类化合物加氢脱氧影响的密度泛函理论研究)[J]. J Mol Catal (China) (分子催化), 2022, 36(2): 145-161.

- [26] He Zheng-hua(何正华). The reaction mechanism of acetylene hydrochlorination over Au-based catalysts (Au 基催化剂催化乙炔氢氯化反应的机理研究)[D]. Tianjin(天津): Tianjin University(天津大学), 2012.
- [27] Conte M, Davies C J, Morgan D J, et al. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene[J]. J Catal, 2013, 297: 128–136.
- [28] Malta G, Kondrat S A, Freakley S J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399–1403.
- [29] Wang Y, Zhu M, Kang L, *et al.* Neutral Au_n (n = 3~10) clusters catalyze acetylene hydrochlorination: A density functional theory study[J]. *RSC Adv*, 2014, 4(72): 38466–38473.
- [30] Conte M, Carley A F, Heirene C, *et al.* Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism[J]. *J Catal*, 2007, 250(2): 231–239.
- [31] Zhang J, He Z, Li W, *et al.* Deactivation mechanism of AuCl₃ catalyst in acetylene hydrochlorination reaction: A DFT study[J]. *RSC Adv*, 2012, 2(11): 4814–4821.
- [32] Zhao C, Guan Q, Li W. DFT studies on the mechanism of acetylene hydrochlorination over gold-based catalysts and guidance for catalyst construction[J]. *Inorg Chem Front*, 2019, 6(10): 2944–2952.
- [33] Malta G, Kondrat S A, Freakley S J, et al. Deactivation of a single-site gold-on-carbon acetylene hydrochlorination catalyst: An X-ray absorption and inelastic neutron scattering study[J]. ACS Catal, 2018, 8(9): 8493-8505.
- [34] Machado B F, Oubenali M, Axet M R, et al. Understanding the surface chemistry of carbon nanotubes: Toward a rational design of Ru nanocatalysts[J]. J Catal, 2014, 309: 185–198.
- [35] Zhao J, Wang B, Yue Y, et al. Towards a greener approach for the preparation of highly active gold/ carbon catalyst for the hydrochlorination of ethyne[J]. J Catal, 2018, 365: 153–162.
- [36] Schwerdtfeger P, Hermann H L, Schmidbaur H. Stability of the gold (I)—phosphine bond. A comparison with other group 11 elements[J]. *Inorg Chem*, 2003, 42(4): 1334–1342.
- [37] Hamel A, Schier A, Schmidbaur H. Implications of the results of a routine structure determination: Tris

(triphenylphosphine) gold (I) chloride bis (dichloromethane)[J]. *Z Naturforsch B*, 2002, **57**(8): 877–880.

- [38] Wan F, Chao S, Guan Q, et al. Reaction mechanisms of acetylene hydrochlorination catalyzed by AuCl₃/C catalysts: A density functional study[J]. Catal Commun, 2017, 101: 120–124.
- [39] Ali S, Khan M B A, Khan S A, et al. The catalytic performance of metal-free defected carbon catalyst towards acetylene hydrochlorination revealed from firstprinciples calculation[J]. Int J Quantum Chem, 2020, 120(24): e26418.
- [40] Pattisson S, Dawson S R, Malta G, et al. Lowering the operating temperature of gold acetylene hydrochlorination catalysts using oxidized carbon supports[J]. ACS Catal, 2022, 12(22): 14086–14095.
- [41] Gautam S, De Sarkar A. A systematic investigation of

acetylene activation and hydracyanation of the activated acetylene on Au_n (n=3-10) clusters via density functional theory[J]. *Phys Chem Chem Phys*, 2016, **18**(20): 13830–13843.

- Zhao Y, Zhao F, Kang L. Catalysis of the acetylene hydrochlorination reaction by Si-doped Au clusters: A DFT study[J]. *J Mol Model*, 2018, 24(3): 1–7.
- [43] Zhao F, Wang Y, Kang L. A density functional theory study on the performance of graphene and N-doped graphene supported Au₃ cluster catalyst for acetylene hydrochlorination[J]. *Can J Chem*, 2016, **94**(10): 842–847.
- [44] Ferraro F, Pérez-Torres J F, Hadad C Z. Selective catalytic activation of acetylene by a neutral gold cluster of experimentally known gas-phase geometry[J]. J Phys Chem C, 2015, 119(14): 7755–7764.

Research Progress of the DFT Study on the Acetylene Hydrochlorination over Gold Catalyst

XU Cheng-yu^{1,2}, LI Xiao-yue^{1,2}, LI Sheng-nan^{1,2}, DONG Yang^{1,2}, SUN En-qi^{1,2}, FAN Tian-bo^{1,2}, ZHANG Fu-qun¹, LIU Yun-yi^{1,2}, GUO Hong-fan^{1,2*}

(1. Liaoning Provincial Key Laboratory of Chemical Application Technology, College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China; 2. Liaoning Engineering Research Center for Magnesium and Calcium Inorganic Functional Materials, Shenyang 110142, China)

Abstract: Acetylene hydrochlorination (AH) is one of the primary ways for producing vinyl chloride. AH traditionally uses highly toxic mercury catalysts, so the development of mercury-free catalysts is urgent. Gold (Au) catalyst is one of the most promising alternative catalysts. However, the catalytic mechanism like the active Au species, the activation process of the reactants or the transition state in the reaction system is not very clear yet. Density functional theory (DFT) has played a highly important role in studying the reaction mechanism of Au catalyzed AH. This work reviews the research progress of the DFT study on the active sites, the adsorption properties of reactants on the Au catalysts, and the reaction mechanism. The DFT simulation of the catalytic AH reaction process over cationic Au and Au clusters is emphatically discussed, including the simulation for the effects of the electron state of Au, the doping by other metals, as well as the size and shape of Au cluster on the catalytic AH reaction. The results indicate that DFT calculations have played a crucial role in studying the adsorption, reaction intermediates, and transition state at the molecular scale, which significantly contributes to understanding the mechanism of Au-catalyzed AH reactions.

Key words: density functional theory; gold catalyst; noble metal catalyst; carbon support; support effect