王炜泽,刘璐,胡延岗,王广钊.氮掺杂石墨烯负载单原子Zr催化CO2加氢的密度泛函理论研究[J].分子催化,2023,37(5):419-427
氮掺杂石墨烯负载单原子Zr催化CO2加氢的密度泛函理论研究
Density Functional Theory Calculation of CO2 Hydrogenation over Single Zr Atom Incorporated N Doped Graphene
投稿时间:2023-04-23  修订日期:2023-07-06
DOI:10.16084/j.issn1001-3555.2023.05.001
中文关键词:  CO2催化加氢  石墨烯  密度泛函理论  甲酸  CO
英文关键词:CO2 catalytic hydrogenation  graphene  density functional theory  formic acid  CO
基金项目:国家自然科学基金资助项目(No.51906090)
作者单位E-mail
王炜泽 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
刘璐 江苏大学 能源与动力工程学院, 江苏 镇江 212013 lliuenergy@ujs.edu.cn 
胡延岗 江苏大学 能源与动力工程学院, 江苏 镇江 212013  
王广钊 长江师范学院 电子信息工程学院 超常配位键工程与新材料技术重庆市重点实验室, 重庆 408100  
摘要点击次数: 371
全文下载次数: 272
中文摘要:
      基于密度泛函理论计算, 研究了H2和CO2在氮掺杂石墨烯负载单原子Zr催化剂(ZrNx-Gr)上的吸附和CO2催化加氢反应. H2和CO2在ZrN3-Gr上单独吸附的吸附能分别为-0.49和-2.17 eV, 在H2和CO2共吸附状态下, 吸附能为-2.24 eV, 均高于在ZrN4-Gr表面的吸附能, 表明ZrN3-Gr表面更利于CO2加氢反应的发生. 在ZrN3-Gr表面, CO2在共吸附后保持了其单独吸附时的特性, 削弱了H2分子的吸附. CO2在ZrNx-Gr表面催化加氢反应起始于H2和CO2的共吸附构型, 沿反式HCOOH路径形成甲酸盐(HCOO*)中间体, 然后HCOO*基团吸附H原子形成反式甲酸, 在ZrN3-Gr和ZrN4-Gr表面该路径的反应能垒分别为1.85和2.48 eV. 另一路径为产生CO与H2O的反应, 在ZrN3-Gr和ZrN4-Gr表面的反应能垒分别为1.86和1.73 eV, 表明ZrN3-Gr更利于CO2加氢生成甲酸反应的发生, 而ZrN4-Gr表面更利于CO的产生.
英文摘要:
      Based on Density functional theory calculations, the adsorption of H2 and CO2 on nitrogen doped Graphene supported monatomic Zr (ZrNx-Gr) and the catalytic hydrogenation of CO2 were studied. The adsorption energies of H2 and CO2 on ZrN3-Gr alone are −0.49 and −2.17 eV, respectively. In the co-adsorption state of H2 and CO2, the adsorption energy is −2.24 eV, which is higher than the adsorption energy on ZrN4-Gr surface, indicating that the ZrN3-Gr surface is more conducive to the occurrence of CO2 hydrogenation reaction. On the surface of ZrNx-Gr, CO2 maintains its individual adsorption characteristics after co-adsorption, weakening the adsorption of H2 molecules. The catalytic hydrogenation reaction of CO2 on ZrN3-Gr surface begins with the co-adsorption configuration of H2 and CO2, forming formate (HCOO*) intermediates along the trans HCOOH pathway. Then, the HCOO * group adsorbs H atoms to form trans formic acid. The reaction energy barriers of this pathway on ZrN3-Gr and ZrN4-Gr surfaces are 1.85 and 2.48 eV, respectively. Another pathway is the reaction between CO and H2O, with reaction energy barriers of 1.86 and 1.73 eV on the ZrN3-Gr and ZrN4-Gr surfaces, respectively. This indicates that ZrN3-Gr is more conducive to the reaction of CO2 hydrogenation to formic acid, while the ZrN4-Gr surface is more conducive to the production of CO.
HTML  查看全文  查看/发表评论  下载PDF阅读器